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PREFACE

For some years it has been the privilege of the writer to give
lectures on the Caleulus of Probability to supplement eourses of
lectures by others on elementary statistical methods. The basis
of all statistical methods is probability theory, but the teacher of .
mathematical statistics is concerned more with the application
of fundamental probability theorems than with their proof, (I,
is thus a convenience for both teachers and writers of texthooks
on statistical methods to assume the proof of certain theorems,
or at least to direct the student to a place where their:’p&aof may
be found, in order that there shall be the minippmy divergence
from the main theme.

This treatise sets out to state and prove invelementary mathe-
matical language those propositions and théoréms of the caleulus
of probability which have been found\bseful for students of
elementary statistics. It is not intended as a comprehensive
treatise for the mathematios gljaiiilate; the reader has been
envisaged as & student with Inter,B.Sc. mathematics who wishes
to teach himgelf statistical~methods and who is desirous of
supplementing his reading\ With this end in view the mathe-
matical argument hasioften been set out very fully and it has
always been kept asdimple as possible. Such theorems as do not
appear to have g @iréct application in statistics have not been
considered and,ait attempt has been made at each and every
stage to givepractical examples. In a fow cases, towards the end
of the bogk,\when it has been thought that a rigorous proof of
a theore}i&,would be beyond the seope of the reader’s mathemaitics,
I hage)been content to state the theorem and to leave it at
that,) |

The student is to be pardoned if he obtains from the elementary
algebra textbooks the idea that workers in the probability field
are concerned entirely with the laying of odds, the tossing of dice
or halfpennies, or the placing of persons at a dinner table. All
these are undoubtedly useful in everyday life as occasion arizes
but they are rarely encountered in statistical practice. Hence,
while I have not serupied to use these Hlustrations in my turn, as
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viii Preface
soon as possible L have tried to give examples which might be me#
with in any piece of statistical analysis.

There ig nothing new under the sun and although the elemen-
tary calculus of probability has extended vastly in mathematical
rigour it has not advanced much in scope since the publication
of Théorie des Probabilités by Laplace in 1812. The serious
student who wishes to extend his reading beyond the range of
this present book could do worse than to plod his way patiently
through this monumental work. By so doing he will find how
much that is thought of as modern had already been trgated in
& very general way by Laplace. O

It is a pleasure to acknowledge my indebtodneéss to my
colleague, Mr N. L. Johnson, who read the manyseript of this
book and who made many useful suggestion," I must thank
my colleague, Mrs M. Merrington for help inproof reading, and
the University Press, Cambridge, for tbq*&njform excellence of
their type setting. Old students of thig\department cannot but
be aware that many of the ideas expressed here have been derived
from my teacher and one-time gg)];lef;gue, Professor J, Neyman,
now of the University of California. It has been impossible to
make full acknowledgementand it is to him therefore that I
would dedicate this bogk, Nevertheless, just as probability is,
ultimately, the expression of the result of a complex of many
factors on one’s 0@ #iind; so this book represents the synthesis
of different and often Opposing ideas. In brief, while many people
have given wé’ideas the interpretation and possible distortion
of them are peculiarly mine, :

.';\'w F.N.DAVID
DE]."A'}'T-}MENT OF BTATISTICS
FF‘I{UZC"ERSITY COLLEGE, LONDON
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CHAPTER I
FUNDAMENTAL IDEAS

It has become customary in recent years to cpen expositions
of probablhty or statistical theory by setting out those philo-
gophical notions which appear to the author to underlie the
foundations of his mathematical argument. Unfortunately ‘as,
many men, 80 many opinions’ and the unhappy student of the
subject is often left bogged in the mire of philosophical, i3y
quisitions which do not lead to any satisfactory conclusidnyand
which are not essential for the actual development of thé,theory
This does not imply, however, that they are not necessary It iy
true that it ig possible to build up a mathematichl theory of
probability which can be sufficient in itself\and in which a
probability need only be represented by a sym‘%ol Ifthe building
of such a framework were all that was required then gpeculations
and theories would be unprofitable, for(thére can be no reality in
mathematical theory except in so famds it is related to the real’
world by means of its promises.and its conclusions. Since the
theory of probahility attempbs) $o express something about the
real world it is clear that fiathematics alone are not sufficient
and the student needs;i@ust try to understand what is the
meaning and purpoge’ef the logical processes through which his
mathematical thedry leads him; for the anomalous position
obtains to-day inwhich there are many points of view of how to
define a probabihty, and as many more interpretations of the
results of &Ep‘lymg probahbility theory to observational data, but
the actua,l caleulations concerned are agreed on by all.
Fundamentally the term probable can only apply to the state
of Thind of the person who uses the word. To make the statement
that an event is probable is to express the result of the impact of
& complex of factors on one’s own mind, and the word probable
.in this ease will mean something different for each particular
individual; whether the statement is made ag a result of numerieal
calcula,tlon or as a result of a number of vague general impressions
is immaterial. The mathematical theory of probability is con-
cerned, however, with building a bridge, however inadequate it
DFT I

L



2 Probability Theory for Statistical Methods

may seem, between the sharply defined but artificial country of
mathematical logic and the nebulous shadowy country of what
is often termed the real world. And, descriptive theory being at
present in a comparatively undeveloped state, it does not seem
possible to measure probability in terms of the strength of the
expectation of the individual, Hence, while the student should
never lose sight of the fact that his interpretation of figures will
undoubtedly be coloured by his own personal Impressions and
prejudices, we shall restrict the meanings of probable and prob>
ability to the admittedly narrow path of numbers, and we shall
consider that the work of the probabilist is complete shen a
numerical conclusion has been reached. We ghall thug transfer
a probability from the subjective to the objective.field.

In making such a transference, however, we dolriot escape the
main question ‘What do we mean by a probability?’ although
we possibly make it a little easier to answer. In the field of
statistical analysis there would seem to };@‘two definitions which
are most often used, neither of whichyis Jogically satisfying. The
first of these theories we may call,the mathematical theory of

arrangements and the second the froquency theory. Since it

is by the light of these two~theories that probabilities are
generally interpreted, it willbe useful to consider each of these
in a little detail. The gthematical theory of arrangernents
possibly is as old ag Aming and cardplaying; certainly the idea
of probability deﬁ{lég\n such a way was no secret to Abram de
Moivre (Doctrine af Chances, 17 18), and it is in fact the definition
which everyone Would tend automatically to make. For example,
suppose thafthe Probability of throwing a six with an ordinary
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& head may be obtained and the required probability, according
to this theory, is therefore 4.

&o far there is perhaps httle need for comment. A mathematical
set of arrangements Q is postulated; from the set Q the subset w
of arrangements in which the event may happen is picked out,
and the ratio of the subset to the complete set of arrangements is
the defined probability. This probability is exact in the mathe-
matical sense, just as is the constant 7, but it is without meaning.
The statistician now takes over and states that in saying the
probability of an event is z, where p is the ratio of favourable 0
total arrangements, it will mean that if the experiment is catried
out on a very large number of oceasions, under exactly similar
conditions, then the ratio of the iumber of times on fwhich the
event actually happened to the total number of titaes the trial
was made will be approximately equal to psand this ratio
will tend more closely to be p as the r}umber of trials is

- increased. N\

It is the definition of prebability byt ;na,thematma,l arrange-
ments and its justification by means ofifepeated trials which we
usually accept for lack of anything; better, but it is well to realize
that the interpretation of probablhty defined in this way is open
to objection. We have said th&t probability theory is an attempt
to bridge the gap which hes between mathematical theory and
observational reality, It follows therefore that any justification
of the theory should be based on this so-called reality whereas it
quite obviously i%not. In no series of trials in the so-called real
world can experﬁsnents be made under exactly similar conditions,
If the trials.aré made by one person then they must differ in at
least one, a,s\pect time, and if they are carried out at the same
mstant\of time then they must differ in that they are performed
by¢entirely different people. Tt is certain that the conditions as
statéd can never obtain in the real world and that in a strict
logical sense therefore the bridge between theory and practice
seems impossible to construct. It must, however, be stated that
in practice, provided care is taken in the experimental conditions,
and provided the number of experiments it not large enough for
the effect of wear in the experimental apparatus to become
apparent, the ratio of the number of successes to the total number
of trials does approximate to that stated in the mathematical

I-2
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4 Probability Theory for Statistical Methods

model, and it is -considered that this ig a justification of the
mathematical framework.

: eTHe writer feels, however, that the mathematical model should
be subjected to closer serutiny. Suppose that we imagine a
mathematigian who has spent all his lifotn one room and who
has had no 'o‘iiportunity to observe the real world outside. Such a
mathematician could build & mathematical theory of probability
just as could another mathematician who had contact with reality,
and hewould be able tostate the probability of throwing a six Wwith
a die or of a head with a halfpenny simply by idealizing the.die or
halfpennywhichhadbeendescribedtolﬁm. Forany mathématical
argument and eonclusion follows logically from the“premises on
which it is based, and both our mathematicians; pPemises will be
based on the simplification of the die or th¢ halfpenny.

This much is certain, but what Is not so\dertain is that these
premises would be the same for the twoPersons. The imaginary
mathematician rright postulate a setrof arrangements in which
& weight of one was given to one, a{weight of two to two, and so
on making a total set of 21, Fronethis he conld go on to postulate
that the probability of 3 six'was 6/21, and within the narrow
framework of his own postulites he would be correct. Or he might

+ postulate three cases forthe halfpenny, one for heads, one for
tails, and one for thesdceasion on which the halfpenny stands
upright. Again, Kh'atever conclusions he drew regarding the
probability of heads would be correct with reference 1o the get of
arrangementg(which he had postulated.

The mathelatician of the real world would cerfainly aot

~Jrevious experience had taught him, either from 4 study of
\,Applied mathematics op from gaming itself, that one side of the
die was as likely to turn up as any other. In other words, un-
consciously perhaps, he would chooss for hig fandamenta] get of
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problem in which he had no means of being able to foretell the
answer, a state of affairs which is more frequent than not in
statistical practice. He must therefore build his fundamental sgt
of arrangements as best he may, but since the acid test of theory
is experiment he woull undoubtedly carry out exp ments to
test the adequacy of his mathematical set-up. Now if Gxperiment
showed that one of his alternatives occurs with twice or thrice the
frequency which he had allowed, he would then alter his funda-
mental set so that his thepretical probability and the probability
as estimated from practice were more or less in agreement. And,
in s0 doing, he would again be arguing in a circular way and High
theotetical definition would have little validity when applied to
a practical problem. A

The writer would suggest therefore that although, the' mathe-
matical theory of arrangements is exact on the theoretical side,
-1t 18 inadequate when the link between theory ahd practice is

gpttempted and that the stumbling block qf’c\al'cular reasoning
which lay in the path of Laplace and swhsequent nineteenth-
century writers has not really been elimifatéd. Some probabilists
have shown themselves to be aware ofithis and have attempted
a definition of probability not verytdifferent from that which we
have already giveu as the connegting bridge between the mathe-
matical theory of arrangemefits and observation. The frequency
definition is commonly gien as follows: ‘If in a serios of inde-
pendent and absolutelidentical trials of number # the event B
is found to ocour on #wccasions, the probability of & happening
1% defined as the Jindit of the ratio m/n as n becomes very large.’
We have already'noted the objections which might be raised
against thi ofinition in that the conditions ¢ absolutely identical’
are impqsgible to satisfy and that as » increases the ratio does not
tend taa definite limit for the effect of wear on the apparatus is
nof iteonsiderable. In practice this frequency definition does
seerll to work over a limited range, but it is difficult to fis into
a mathematical scheme, and is therefore skirted rather warily by
mathematicians and statisticians alike.

A definition along the lines put forward for other statistical
parameters by J. Neyman and E. 8. Pearson might seem to hold
a promise of more validity, although the pitfalls to be met in
pursuing such a course are many. We may begin with the idea
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6 Probability Theory for Statistical Methods

- that there is & population of events, and that there exists a

population parameter, constant and fixed, which describes these
events, and which we may call & population probability. Such
a probability would bear no resemblance to the probabilities
which we have just discussed. For example, if we wished to know
the population probability of a Chelsea Pensioner who attains the
age of 70 in 1945 dymg before he reaches the age of 71, we could
by waiting until the end of 1946 find out how many Chelsea
Pensioners attaining age 70 in 1945 had died before reachitlg
age 71, and define our population probability as just(bhiat
proportion of Pensioners who had died out of the tota.lsi'}umber
exposed to risk. PAREE
Hence a population probability is just the ratio of $hé number -
of times which the event has happened divided by the total
number of events if the population is finite. Tliefe are, however, .
many populations in statistics which are-niet capable of being
enumerated in this way. For instancelthe population of the
tossing of a die or of the throwing of\halfpennies will never be
completed. Nevertheless we shall Rostulate that these popula-
tions can be described by a congfant parameter, or a population
Probability, which experience.hak shown to be equal to a certain
value, and which, if an in nite population were capable of being

enumerated, would be efuel to the proportion of successes in

Following along,@ Lines of statistical practice we have there-
fore an unknown' Population parameter, our Population prob-
ability p, Whi:el\l wo postulate exists, and which we desire to
estimate.,ﬁf%\ perform a series of experiments and from these
experin e1ts we derive an estimate of p. For examples, we might

sampling will be approximately equal to P, and if it were possible
to carry out an infinite series of trials, in each of which the die

Chelsea Pensioners. Tt ig desired to kno
Pensioner who attaing age 70 in the year
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Pensionors who have died before reaching 71. This is equivalent
to stating that the desired population probability will exist at
the end of the calendar year but that at the present time it does
not exist because it is not known which of the individuals
possesses the required characteristics of dying or not dying. In
order therefore to estimate the probability of a Pensioner
attaining age 70 in the year 1945 dying hefore he is 71 years of
age it will be necessary to postulate a hypothetical population of
Pensioners attaining age 70 in 1945 of whom a fixed proportiond
may be expected to die before reaching 71. If we now choose. a
number of other years in which conditions of living were redson’
ably the same, and calculate the proportion of Pensioners“who
satisfied the required eonditions, we may regard the pfoportions
thus obtained as estimates of the unknown populati¢riparameter
and from combining them we may make an etiwate of which
can be stated to lie within certain imits. )

Now, if we take this estimated value o 'p\a-s the probability
that a Pensioner attaining age 70 in thg,_yéa.r 1945 will die before
he reachos the age of 71, we shall not expect the value of p actually
calenlated from the 1945-6 ﬁgure:s.’t'é have necessarily the same
value, For the 19456 figure will be the exact value for that
particular year, but will itself al80 be an estimate of the chances of
death in any year for a Pedsioner of the stated age. Hence if we
alter our question a ]ij:t%.;a}nd ask what are the chances of death
before reaching the Bge of 71 for a Pensioner who attains
age 70 in the year3%then the addition of the 19456 data should
give increased aberacy to our estimate of the unknown prob-
ability and,a@c}lﬂd enable closer limits to be obtained for this
probabﬁti{pfovided all the known causes which might cause
ﬂuctua,ti@ns are controlled for each of the years considered.

”.'[:hié’ control of eauses of variation is important and it may be
wellto digress a little from the main theme in order to consider
what is meant by it. In any set of figures, whether obtained
directly by experiment or collected from records, there will he
variations both between the individual sets and from some values
which might be expected by hypothesis. It is a commonplace
to state that before the collection of material is begun, no matter
what the material may be, all known causes of variation should
be eliminated or at least controlled. Such known causes are often
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spoken of as assignable causes because we are able to state
definitely that they would cause variation unless they were
controlled. Usually in statistical method the aim of the compiler
of figures is o eliminate such sources of variation, but there are
occasions on which assignable variation is too small to influence
results, or it would cost too much in time and money to eliminate
it. In such cases the assignable variation remains in the material
but it is necessary to remember it when interpreting amy
numerieal results, .

Thus in digeussing the chances of death of a Chelsea Pensioner
ibis clear that we should use for our estimate of proba,biiity only
those figures relating to other Pensioners of the same'age and that
for each year studied weshould take care that a8 fgzﬁ}.ns was possible
all other eonditions were the same. By s0 doing We should ensure
that each set of figures gave an estimate of\the same unknown

...-hypothetical population probability. /"

After all the agsignable causes have 'l}eén controlled the result
of any one experiment or collection of figures is still subject to
variation from eauses which we dowtot know about and therefore

- cannot control. It is these uniaksignable causes, or as they are
more often called, random, é?rors, which create the need for the
concept of probability.. /A penny is tossed in the air. If care is
taken in the spin of the\coin imparted by the finger and thumb,
and if a soft custidned surface is chosen for the penny to fall
upon, then it is@ften possible to determine beforehand whether
it will fall with’she head or the tajl uppermost. That is to say by
controlling,sertain sources of variation the fall of the penny can

be preditted. .
O;}ie" other hand, if no care is exercised in the tossing and in
arrenging the fall of the penny it is not possible to prediet which
P ay upit will fall even if the experiment is carrieq out a namber



Fundamental Ideas 9

experience has shown that if the errors are really random then
the mean value of estimates from a number of series of trials will
approximate to a constant number.

What we have postulated therefore for our definition of
probability is that the population probability is an unknown
proportion which it is desired to estimate. This parameter may
only be estimated by a series of experiments in each of which
the same assignable causes are controlled and in each of which,
as far as is possible, no new cause of variation is allowed to enter:
The result of each experiment may be regarded as an estimateof
thizs unknown proportion and the pooling of these estimates
enables prediction to be made for any new set of experimentyit is
desired to carry out. We have not postulated absolutelyidentical
conditions for each of a set: of experiments. Experjenéehas shown

this to be unnecessary and provided the moresobwious sources -

of variation are controlled the different prghability estimates
will vary about the unknown true value.'Q?Ve may discuss the
nature and size of this variation at a later’stage,

The advantages to be gained by defitiing a probability in this
way would seem to the writer to kevmany. For example, such
a definition will fit more closely ifite statistical practice than does
(zay) the mathematical theorjf'éf arrangements. It is rare in
statistical practice to be able to state the alternatives of equal
weight, such as one i ablé to do with the six faces of a die; in
fact generally it is nat%sary to find a probability by evaluating
the ratio of the nu{:n}rér of suceessos to the total number of trials,
Under the schetie which we have just set out this would be
recognized fpr;\?}ha,t it is; an estimate of the unknown probabitity
and an e:}t;}qf&te which will undoubtedly be different from that
Which'“;fi,]l be obtained when more evidence renders another
ealculation possible, Further, if it is shown by experiment that
séveral alternatives are approximately equally possible as in the
case of the six faces of the die or the two sides of a penny, then
there appears to be no reason why a mathematical model based
on equi-probable alternatives should not be constructed if it is
80 desired. But the mathematical model can only be established
after experiment has shown its possible construction, although
such a construction will be valunable in certain mathematical
applications.

Q!
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. The interpretation of a probability will follow directly from
the definition which we have given. If as the result of calculations
we have found that the probability of a given event is p, then
wo should say that if & series of experiments were carried out in
which all assignable causes of variation were controlled and no
further large assignable or unassignable causes of variation wore
permitted to intervene, then the mean value in repeated experi-
ments of the proportion of times in which the event oceurred,
will be approximately equal to p. Agan illustration, suppose‘that
the results of experiments tell ug that the probability oflaMank
crossing a minefield without detonating a mine iy {86. This
would mean that the average number of tanks crossing tinscathed

“out of every 100 attempting to cross the minefield would be 86.

% We should not be able to say which tank would\be hlown up, new

swhat the exact proportion of tanks crossinghunscathed in any
given 100 would be, but we should feel Sure that the average
proportion of successes, if a series of trials could be made, would

approximate to 0-86, O
We began by stating that by prdducing a numerical probability

the work of the probahilist sheuld be considered as finished and
that of the interpreter beg}it; and perhaps the illustration last

as the-‘{zesﬁlt of the impact of the pure number on his mind and

if' tanks were fow and pursuit nog profita

ble then h ;
regard 0-14 as not acceptable. In thig © might

case, as in every other
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a decision. Generally these other factors are not capable of
numerical expression or they would have been included in the
probability calculation. For the experimentalist turned statis-
tician it is often possible for the role of probabilist and interpreter
to be combined, for only the person who has collected the material

can know its exact worth in interpretation; but the professional -

statistician, per se, may only calculate a numerical probability
and must perforee leave the interpretation of probability in the
shape of decision for action in the hands of someone else.

N
# A
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The definition of prob&bﬂity according to the ma,thema,ticalf theory of -

arrangements may be found in almost any text-book of Higher Algebra..
- for Schools. The question of an interpretation of such g probability is not
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An excellent diseusgion of the definition a.mi mterpreta,tmn of
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Different points of v1ew, ‘not  discussed here, will be found in
J. M. Keynes, A Treatise, ©Of ‘Probability and H. Jeffreys, Theory of
Probability. \\
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CHAPTER IT

PRELIMINARY DEFINITIONS AND
' THEOREMS

In the previous chapter we bave been concerned with the
definition and interpretation of what is meant by a probability,
In this and succeeding chapters the objective will be the settiny
out of the definitions and rules whereby we may build up agheéory
for the addition and multiplication of probabilities. The actual
theory will be mathematical and there will be no needto.interpret
it in the terms of the world of observation unti} ‘the logical
processes of the mathematics are completesgnd s numerical
. Buswer is reached. It is usefyl to note that shie'theory which we

shall set out will be applicable to all Mitnerical theories of
probability; in fact the only difference between any of the
numerical theories of probability wilklie'in the definition of what
is meant by a Probability and tghé,iﬁterpretation of statistical
caleulations by the help of such.y probability,

We begin by defining the Fundamenta] Probability Set. The
fundamenta) probability set, wri

T S P
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Preliminary Definitions and Theorems 13

In order to keep the theory in a generalized form we shall
speak of elements of the F.p.s. possessing or not possessing &
certain property when it is desired to caleulate a probability.
For example, in caleulating the probability of throwing a two
with one throw of a die we may speak of an element of the F.2.5.
possessing the property of being a two, or in calculating the
probability of an event we may speak of an element of the 7.e.s.
possessing the property of happening or not happening. A definite
notation will be adopted for this and we shall write P{Eew [Q}
to stand for the words ‘the probability that elements of the
subset o possess the property ¥ referred to a fundamental.)
probability set 2°. This will invariably be abbreviated to P{E}
As stated previously this probability, or strictly estimaté of
probability, will be the ratio of the number of elements of the
T.7.8. possessing the property ¥ (ie. the subset ¥ b0 the total
number of elements of which the ¥.p.s, is comypesed (i.e. the
F.r.8 0). N

It is one of the weaknesses of probabﬂlty\bheory that it has,
possibly through its intimate conmexidn)with everyday life,
taken certain everyday words and used them in a specialized
sense. This is confusing in that it ig ot always possible to avoid
using the words in both their speeiglized and everyday meanings.
As far as is possible we shall atfempt to confine the words to their
specialized meaning only. ()

DrrFixrrion. Two p}Q\pertles, E, and E,, are said to be

‘mutually exclusive!{or ‘incompatible’ if no element of the

F.p.8. of B and EpJahy possess both the properties B, and &,

The definition/is immediately extended to & properties.

The deﬁni@oﬁ’ of mutually exclusive or incompatible properties
is thus seem\® follow along common-gense lines. For example, if
it was desired to calculate the probability that out of a given
nuMbér of persons chosen at random ten (say) would have blue
eyes, and nine (say) would have brown eyes, then in stating that
the property of possessing a pair of blue eyes was incompatible
with the property of possessing a pair of brown eyes, we should
merely be expressing the obvious.

Dermarion. By, By, ..., By, are said to be the ‘only possible’
properties if each element of the ¥.P.s. must possess one of these
properties, or at least one,
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. theorem,

{ \ Definition of logical product. Assume thatthep.p.g,
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TuEOREM. If F, and E, are mutually exclusive and at the same
time the only possible properties, then

P+ P(By) = 1,

Let the 7.¢.5. be composed of # elements of which %, possess the
property E, and n, possess the property B,. Since ¥, and E, are
mutually exclusive no element of the ¥.p.s, may possess both the
properties By and E,. We have therefore by definition,

PlE} = nyfn, P{E} = Ng/n.

¢SO\
Further, since J, and £, are the only possible propextfes, each
element of the F.p.s. must then possess either E\of E,, from
which it follows that iy +%y = n and that a3

P} +P{E) = 1.

Extension of theorem to properties. An extension of the above
theorem for % mutually exclugive &Lﬁ;ﬁnly Possible properties
Inay easily be made by following al.qn'g' the same lines of argument.

If there are k mutually exclusiyesand only possible properties,
B, B,, ..., E,, then

N

é‘,l PlE} = P{Ej}; P{E} ...+ P{E) = 1,

Definition of Eoggiggz‘sum. Assume that the 5.p.g, is composed
of elements someofwhich possess the property &, or the property
E,...or the property £,. The logical sum, E,, of any number of
these diffexelt properties will be a Property which consists of an

element, of-the r.p.g, Possessing any one of thege Properties, or
at lwt“\one. This may be written

Eo = E1+Eg+--..

is composed
the Property E,, or the
The logical product, B, of
Toperties will be g, property
ent of the wv.p.g, Possessing all m
E=EE,..

of elements some of which possess
Property E,, ... or the property .
any nutnber, m, of thegs different p
which consists of BN elem
Properties. Thug

These definitiong may be illustrated by means of the following
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TrrorEM. The logical sum of two properties B, and E, is given

by
Py} = P8+ By} = P{E}+ P{H;}— P{E, By}
= P{E\}+ P{E,} - P{F"}.

Let the r.p.8. consist of » elements, 5, of which possess the
property E,, n, possess the property E,, n,, possess both the
properties X, and E,, and », of which possess neither E, nor E,.
The proof of the theorem then follows directly from definition.

Hoy +Rg+ N n +n
P{E'1+E2}_=1—?: . PR} =17 O\
e\
P{Ez} _ ﬂr2+n1‘l; P{E Ez — ?%2 ”:} \.

<

and the result folows.
CoroLLary. If E, and X, are mutually exc]uswé\then

P{E, + By} = P{E1}+P{E2}'\\:
For if B, and E,; are mutually exclusive th(kﬁlno element of the
F.r.S. may possess both the properties & and ¥, This means

that 7,5 = 0 and therefore that P{E, B,}>= 0.
Similarly for k£ mutually exclumye propertles

:EEi} ZP{

Exercise. Find an exprg\;sauon for the logical sum of three
properties ,, By and By\e. find P{H, + H, + E,} and show how
the expression is simplified if the properties are assumed to be
mutually exclusivel

.t\“
\'"\" Numerical Examples

(1) wa} that the probability of throwing a head with a single
toss Qf\a, coin is constant and equal to 1/2, if two identical coins

“thrown simultaneously once what is the probability of
obtaining (@) two heads, (b) one head and one tail, (¢) two tails?

If it is given that the probability of throwing a head with &
single toss of a coin is constant and equal fo 1/2, it follows that the
probability of throwing a tail is also constant and equal to £ since
we may assume that the properties of being head or tail are the
only possible and they are obviously mutually exclusive. We
may therefore construct a ¥.2.8. containing two elements of equal
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- weight; the first of these would possess the property of being
a head (H) and the second would possess the property of being
a tail (7). Hence for two coins we should have the following
possible alternatives

HH, HT, T,H, 7T,

Lega F.p.5. of four elements and the probability of two heads,
one head and one tail, two tails will be 1. %, } respectively,

(2) The probability that any given side will fall uppermost
when an ordinary six-sided die is tossed is constant and equal'to
1/6. What is the probability that when a die is tossed a 2 or.3ywill
fall uppermost? There are various ways in which thi§ problem
may be attempted. The setting up of a mathemstical model
along the lines of the previous problem would givén probability
of 1/3. As an alternative we may note that the'p\roperty of being
% 2 is mutually exclusive of the property of being a 3 and that the
logical sum of the probabilities of s 200'1\\3 3 will therefore be
FtE=4 '

(3) Two dice are tossed simultafiedusly. If the probability
that any one side of either die willfall uppermost is constant and
equal to 1/6, what is the probability that there will be 3, 2 upper-
most on one and a 3 on thewother? The probability that there
will be a 2 on the firstadie and 2 3 on the second will be the
logical product of thesbwo probabilities, i.e.

P{2 0h\1st and 3 on 2nd} = b=

The problem d\oéa not, however, specify any order to the dice and
it would be fossible to get & 3 on the first and & 2 on the second.
The reqpit probability is therefore 1 /18.
(4)\.Qonditions as for (3). What is the probability that the
twannmbers will add up to 52 Answer: 1/9.
.({8) n halfpennies are tossed simultaneously. Tf for each coin
. the probability that it will fall with head uppermost is constant
and equal to §, what is the probability that % out of the 7 coins
will fall with head uppermost?
Suppose that the coins are numbered and that the first; & fall

with head uppermost and the second 7 — & with tai] uppermost,
The probability of this is _ :

@@t = (.
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But no order was specified regarding the % heads and they may
be spread in any manner between the % coins. The number of
ways in which £ heads and » — % tails can be arranged is

nlfk{n—k)!
and the required probability is therefore
By lfkln—E)L. *

(6) Three halfpennies are tossed one after the other. If the .
constant probability of getting a head is 1 for each coin, what ds\
the joint probability that the first will be a head, the seqond
a tail, and the third a head? . O

(7) Four dice are tossed simultaneously. If the eenstant
probability of getting any number uppermost on ap¥ vne die is
1/6, what is the probability that the sum of the-hiihibers on the
four dice is 12?7 O

(8) FKive cards are drawn from a pack of 52 If the constant
probability of drawing any one card is 1 /52;‘%11&1; isthe probability
that these five cards will contain (a) j 51921;: one ace, (b) at least one
ace? If the probability is constant'ghén a F.p.s. can be set up
consisting of 562 equally likely altetnatives. The number of ways
in which 5 cards can be drawnifrom 52 if all cards are equally

likely is. &35,

From this number it is\ﬁéééssary to pick out the number of sets
of 5 cards, one card gfywhich is an ace. This is perhaps most easily
done by first withdrawing the 4 aces from the pack. The

number of wayg\in which 4 cards may be drawn from 48 will be

\O~ 481/4144),

O\
To each.of these sets of 4 cards one ace must he added and this

may (be*done in 4 ways. Hence the total number of ways in
which 5 cards may be drawn, one of which is an ace, is

4.481/41441, o
and the required probability of drawing 5 cards, one of which is
_an ace, is 48! | 52!
- "4l44lf sTa7t

A stmilar argument may be used for the probability of obtaining
at least one ace. In this problem the 5 cards may contain just

DET -]
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one ace, or two aces, or three or four. The required probability
will therefore be

CBUMTIF 481 4.3 481 4.3.2 48 , 48!
520 | " 41441 1331451 12,3 81481 T 11471 |-

Examples based on games of chance tend to be somewhat
artificial in that the answer when obtained iz without interest, for
fow persons are prepared nowadays to wager large sums of money
on the fall of & die. Nevertheless it wag from a study of the ganiing
tables that the earliest developments of the theory werezmade
and such problems are of value if the student learns thegléments
of combinatory theory from their study. W

Definition of relative probability. The relative. pi‘é‘babﬂity of
a property B, given g Property B,, will be defibéd as the prob-
ability of a property E, referred to the set of individuals of the
F.B.S. possessing the property ¥,. This will'\be written as

PiE, | 3, NSy

The notation may be translated fo¥o words exactly as before
with the addition of the word ¢ given’ represented by the upright
stroke |. ™

- TeEOREM. Whatever thd :i?;v;o Properties B, and E,,
PUH By} < 13@1} P{E, | )= P{E,} PLE, | Ey}.

. £ )

Let the 7.7.3. he mposed of 7 elements of which 7, possess the
propert_y By, np\possess the property E,, n,, possess both the
broperties El énd B, n, possess neither £, nor E,. By definition,

PEEY="2 pugy _mtta oo B = _Ma_
\ n { 1} n { 2| l} ?‘L1+n12

,s’\ s .
andvthe proof of the theorem follows. The second equality
follows in a similar way,

\m ) TEROZEM. Whatever the properties 2, K, ..., E,
P{E\E,... B = PE}PE, | B}
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Numerical Example

Three bags A, B and € are fillod with balls identical in size and
weight. Bag 4 contains M balls of which m, are stamped with
the number 1, m, with the number 2, and m, +m, = M. Bag B
contains N, balls, »; of which are white and &, —n, of which are
black, while Bag ' contains N, balls, %, of which are white and
N;—n, black. A ball is drawn from 4. If it bears the number 1 ¢
a ball is drawn from B; if it bears the number 2 a ball is draym
from (. Assuming that the probability of drawing an iudivi@ﬁaj
ball from any bag is constant and equal to the reciprocal of the
number of balls in the bag, what is the probability thas, ifa ball
i8 drawn from 4 and then from B or C, the secondmb@ll'is white?
Describe in detail the 7.».s. to which this probability may refer.

It is possible to state the reqaired probability immediately.
Using the notions of logical sum and logic in};duct we may say
at once that the probability that the se¢énd ball is white is

My My | My By, '

Ao

It is required, however, to disetiss the possible mathematical
model which may be set up farthe caleulation of this probability
under the given assumption of all balls within one bag being
equally likely to be dngn. One mathematical model would be
the enumeration of gl possible pairs of balls which might be
drawn. These willbé :

A0T aw B ew 28

O\ . a b [/ d

wherg.q:, ff, ¢ and d are the number of these pairs. It follows that

\m‘*“ m, . a-t+b My c+d
Py M ad4b+te+d’ P2} M atbie+d’
n a n e
N="32__= =_3__Z
P N a+b’ ALAL) Ny c+d

The probability of getting a white ball, given 1 and 2, will therefore

e P{W|land 2} = —_2T° _ "% sy
a+bt+c+d  MN, " MN,
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and a solution of the equations fora, b, c and d will give a complete
enumeration of the r.p.s,

Definition of independence. The property ¥, is independent of
the property E, if P{E} = P{E, | E,).

TeroREM. If the Property X, is independent of the property
E, then the property &, is independent of the property H,.
“ From the definition of independence, if Z, is independent of.&,

then P{E) = P{E, | B,). \

LN

It is required to show that B, is independent of By, e ;
| P{E}} = P{E, | E,).

The result follows Immediately from a conai}iéx:a,tion of the
logical product of B, and E,, \4

PULB,} = P(E} P(E,| B = P P(B, | B}
Using the fact that I is independe;},tjéf E, the converse follows.
Ezample. If E, and £, aro muthally exclusive, can they be
independent? The answer to thiesquestion follows directly from

the definitions, %, and E, are-mutually exclusive if no element
of the F.p.s, possesses botlithe properties K, and ,, That is to

sy PEE) = 0 ~ P(B,| B},
The condition for independence has just been stated ag

PEY~ PiB|B), P}~ P, By
IiEernee E attdE, can only be mutually exclusive and independent
\'S"t P{El} =0= P{Ez},

w];ié:]; is absurd,. Tt follows therefore that B, and E, cannot be
" bi)th mutually exclusive and mdependent, '

) Ezample, (?onsic-ler three properties B, E, and E,. Given

(i) the ».p.s5. i finite, (i) £, i independent of By, (iii) B, is
independent of Ly, (iv) E, is independent of B, B,

Prove that £, is also independent of E,+ B,

definitiong Previously given, Tt the F.P.8. be composed of
:;} elements, %y of which possess the property &, n, the Property
» 73 the property E,, 1,5 both the Properties £, and E,, nys both
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the properties %, and H;, ny, both the properties H, and #,, 192
all three properties K, B, F, and n, possess none of these
properties.
From the given conditions
P{B\} = P{E, | By} = P{H, | By} = P{E, | By By} = o (say).
Substituting for these probabilities we have

g = Tt Pt g+ Mgy Pzt Rios
% Hog Ty + Togg -+ Typg
N3y + %93 _ _ Tqag A

= = 2\
€ N\
Mg THgy +Rpgthyey  Tog+ Py

A solution of these equations and a simple rearrangementshows

h A

that _ Tag + Mgy +Pyag = P{E | By+ 1%}:\
g+ T+ Tigy + Mgz + 09 s QO
and since o= P} }

the result follows. It will be noticed that no‘mention was made
of independence (or otherwise) hetween Ez':a}id H, and the result
will hold therefore whether these two properties are independent
or not. o0

*

These then are the preliminargtdefinitions and theorems which
are necessary for the develgpment of probability theory. All
will be used in the expositionrwhich follows although we shall not
necessarily restate eaoh\theorem or definition at the time at
which it is used. Itshould be the aim of the reader so to familiarize
himself with thexédncepts that reference back to this chapter
becomes unnecessary. Further, each and every stage of a
calculationnof any probability, no matter how trivial, should bhe
followed biyan interpretation of what the probability means, or
would mBan if experiments were carried out. Only by such
re{iﬁiﬁiéu can the theory of probability acquire for the reader

7 -
both’meaning and sense.

REFERENCES AND READING

There would appear to be little argument possible about the theorems
outlined in this chapter. The reader will notice that all proofs are based
on the assumption that the F.r.s. is finite. The propositions can be
shown also to hold for an infinite v.p.s, but appeal would need to he made
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to the theory of sets in order to justify the proofs. The reader must
perforce accept the propositions as true for all cases,

If further exemples are required they may be found in many algebra
text-baoks or in the chapter headed ‘Probability’ in W. A, Whitworth,
Choice and Chance, whose examples and illustrations are exhaustivo,

It will be wuseful for the reader of these books to add te both the
question and snswer the words necessary before a probability can be
caleulated or interpreted. For example, the favourite problem of the
probability of drawing balls from an urn is incalculable unless it is
assumed that all balls have an equal probability of being drawn, u.,nQ
80 on.
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CHAPTER X1

THE BINOMIAL THEOREM IN
PROBABILITY

Following the definitions and theorems for the addition and
multiplication of probabilities which have been set out in the )
previous chapter it would be possible to solve any problem in
elementary probability; for it is not possible to conceive a problém
which could not be solved ultimately by its reduction to-fret
principles. Nevertheless, from the basic raw material\ of our
subject as represented by these first principles, it is p’oééible to
fashion tools which add not only to our appreqia}tion of its
applications but which also seem greatly to extend\gur Eknowledge.
Intrinsically the application of the binomial\theorem to prob-
ability described below is just a rapid metth or the caleulation
of probabilities by the joint application’ of the elements of
probability theory and combinatorial analysis. Nevertheless,
because of its utility in modern probability and statistical theory,
it will be advantageous to congider the use of the theorem in
some detail. ' o~

The problem in which thé binomial theorem is most frequently
employed is sometim§'\i‘eferred to as the problem of repeated
trials. This arigses from"the fact that it generally presupposes
a series of repea,tesl trials in each of which the probability of an
event occurring {Seonstant; it is required to state the probability
of a given nfm;in%er of successes in a total of repeated trials. In
order to @e the result it is not necessary to assume that this
probabilify, constant from trial to trial, is also a known prob-
abilitys We shall, however, begin by an ilustration in which the
prebability of a single event occurring is assumed as known.

Let us considcr the case of the tossing of & halfpenny when it
is known that the constant probability of a head is % in a single
trial. If the halfpenny is tossed twice then, as we have seen
earlier, an appropriate mathematical model will be

HH, HT, TH, 1T,
with the probabilities of £, 4,  of obtaining two heads, one head
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and one tail, or two tails respectively with two spins of the c?in.
Ifthe halipenny is tossed three times in succession the appropriate
alternatives will be

HLH, BHT, HT,H, THH,
BT, TLHT, TTE, T,

The three tosses can give the Possible results of three heads, two
heads and one tail, one head and two tails or thres tails Wﬂih
corresponding probabilities , $ & §; butalready the enumeiabion
of the possible alternatives ig becoming cumbersome and leaves
the way open for errors. Tt is clear that for cages in which ten or
more tosses were made, the appeal to first principlss; although
atill a possibility, would need considerable calcpla}ion, whereas,
‘a8 will be shown, the required probabilities-msy be obtained
immediately by an application of the binoniial theorem.
TEEOREM. If the probability of the guecess of the event E in
a single trial is constant and equal to z, then the probabilities of
ksuceesses (for & = 0,1,2,...,n), inmdependent trials are given
by the successive terms of the expansion of
. (gtp),
where g =1-p, A\ '

Let P, , denote the?'pr’dbz;.bi]jty that an event, the constant
probability of the occurrence of which in g, single trial is p, will
happen exactly {'\‘bir’nes in % trials. In order to prove the

theorem, therefo;_e, it is necessary to prove the identity
(Q“f'}"’&ER"EJ'Pn.o‘FPn.ﬂ‘*‘--- P k2t 4.+ P

. T

TNy be dons but Possibly one
of thesiniplest is by induction, dividing the proofinte three parts,

(1}, The identity is true for 4 1,ie,

oY G+pe=PR o1 P g

f’.I‘his t:ollows directly from definition, B ,isthe probability that
Ih a single trial the event wilj 0ot happen, that ig B o equals ¢.
Bimilarly B is the Probability that ig 4 single trial the event
will happen. Hence p

1.1 Must be equal to p.
{2) Assume that the identity i8 true fo,
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Multiply each side by (7+ px) and collect the coefficients.
(@ +pry™i=q. By o+ 2(q. By +p.Fyo) + oo
| ATHQ Py A PP ga) o 2B,
Consider the different coefficients soparately.

q.F, , = the probability that an event will not happen at
all in m trials multiplied by the probability that it
will not happen in a further single trial.

Hence q-Fpo=Friie- (\)
. ) '\

N

Similarly it may be argued that

nd
7 N
S %

p'Pm.m = Pm-l-l.m+1' o\: )
It will be sufficient for the other coefficients to consider a typical
term, say the coefficient of x*, O

4. By x+p.F, 1y = the probability tba\t an event will

~ happen exactly V¥ times in m trials
maitiplied by.the probability that it
will not happen in ome further trial,
plus the probability that it will happen
k1 times in the first m trials multi-
plied by the probability that it will

\'\halppen in one further trial.

It is clear therefore that

\:ff.%\-Pm.kH?-Pm.;a—l =Bk
3) It has baén shown that if the identity is true for m it is also
o

true for 1. It has also been shown that the identity is true
for » equial to unity. Hence if it is true for equal to one it is frue .
formagual to two and so on universally. Writing » equal to unity
we'have

(Q'f':p)n = Pﬂ.U+PR.1+ L +Pﬂ.k+ e +Pn.n

and the theorem is proved.
The function (g+px)* is sometimes called the generating
funetion of the probabilities B, , . _ '
Bxample. If the constant probability of obtaining a head
with a single throw of a halfpenny is 1, what is the probability
that in twelve tosses of the coin there will be nine heads?
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The answer will be the coefficient of 2° in the expansion of
(3 +32)12, that is it will be

121 (1)12 65

ofat\2) ~ To24°

This result may be compared with that of Example (5) of
Chapter . (Page 16.) -

Ezample. If the constant probability of obtaining a twa,
uppermost with a single throw of a die jg 1 /6, what ig the
probability of obtaining 3 twos in 8 throws of the die? R, \A

8! (1\3(5\8 \

Amer. 3_'5_7 (6) ("é) . . ) N

Example. (The problem of points) Jones and>Brown are
playing a set of games. Jones requires s games 6 win and Brown
requires . If the chances of Jones Winning\a, single game is p,
find the probability that he wins the set. THiS problem is a version
of the famous “problem of points’ whigh has engaged the atten-
tion of many writers on classical probability. The solution follows
directly from .an application of the’ binomial theorem but its
artificiality should be recognizdgh It appears doubtful whether

problem is not &ithout interest,

- K Joney’, chances of winning a single game is p, then Brown’s
.Tust b 951 —p, because either Jones or Brown must win the
~ single game. Suppose Jones takes s+ r games to win the set. In

N~ 1 out of 5471 games, when the constant probability that

he wins g single game is p, may be written down directly from the
binomial theorem, Tt will be

(8+r—1)! -
(=D [P 7"
It follows then that the

' probability that J. ones wing the set in
§+7 games will be the

probability that he wing the last game
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multiplied by the probability that he wins s— 1 out of the other
é§+r—1 games. This is
(s+r—1)! _
s—1)lrt P
Now Jones may win in exactly s games, or s+ 1 games, or s+ 2
games, ... or s +¢— 1 games. The probability that he wins the set
is therefore obtained by letting = take values 0,1,2,..., (¢ 1)
successively and summing, i.e. Jones’ chance is
og 1. SE+1) o +e=-2! 'S
»+spiy+ BT POt ---+mmf9 g & \J)
An interesting algebraio identity may be obtained by considering
Brown’s chance of winning and its relation to Jones’.hahce.

Thus far we have treated binomial applications,»ijfxﬁhich the
constant probability of a single event is known)\J#'is, however,
not usual in statistical problems that this prebability should be
known and in the majority of cases it is necessary to estimate it
from the data provided. We shall retursinie’ this point at length
at a later stage but an example here will serve as further illustra-
tion of the application of the binoial theorem.

Ezample. The report of thendéan of a Cambridge college
showed the following figuress -

- 5N
- Number of ;m\ldeuts Number of honour | Number of
r Subject e)ée{’niried grades failures
Mathematics e _ 162 38
Music <) 22 11 0
All gubjects O — 389, 5497

—- PN,
What is the probability that

(1) in sélocting 466 students at random one would obtain as
fow hoy:o’ﬁr grades as were obtained in mathematics, and as
many failures?

- {2Y in selecting 22 students at random one would obtain no
failures, as in music, and 11 or more honour grades?

The percentage of students obtaining honour grades in all
subjects is 38. Further, the problem states that 466 students are
to be selected at random. It would seem therefore that the
appropriate value for the probability of ~obtaining an honour
grade is the proportion of honours students within the popula-
tion, i.e. 0-38. Similarly the probability for failure may be taken
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a8 0-054. The answers will be, from direct application of the
theorem,

466 | 468

e T 162 {3}. 804 054198 946 428.
(1) Tear304 (0-38)'5 (0-62)%04, 3872ag] (0'054)" (0-946)

221 . ) a3

(@) oTaz] (054 (0946

The ‘11 or more’ honour grades requires us to calculaté. the

probabilities of obtaining 11, 12, ..., 22 honour grades. This will
be 221 11 {(). 42311

N\

| .
221'0| (0-38)12 (0-62)19

131
221 221
T 13 (. 9 3 . 22
+137g1 (038)3 (0-62) o Lgarop (0-38)2

In the foregoing oxample we have treated a problem in which
& sample is drawn randomly from a pepulation and, in so doing,
may appear to have diverged a little¥rom the problem of repeated
trials. If we consider the proceduren detadl, however, it will be
obvious that the problem of sampling from an infinite population,
or sampling with replacement from a finite population, is iden-
tical with the ‘problem of\repeated trials. In the problem of
repeated trials we cogsider an event % which has a constant
probability of hap ning in a single trial, Ty, trials are performed,
then the binomig‘f‘g;?;em enables us to caleulate the probability
tlfat the eventwill happen exactly k (say) times in these  trials

" of being chosen ag any other disk, and Provided the digk is
returned tf) the box afteresch drawing, theproba,bi]jty of choosing
any one disk will be constant from trial to tria]. Hence if a disk

* A s:a.mple ratdomly drawn from & population ig commonly apoken
?_f 83 4 “rendom sample’, W shall follow Common usage by writing of
random samnples® bug i$ is that the adjective

‘randomn’ ghould nocessary to rernembar
random’ ghg apply to the mothod of draws _
the sample ifself, awing the saraple and not to
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is taken out and returned ten times, we may say that we have
selected a ‘random sample’ of the disks, but we might also say
that we had made repeated trials which were ten in number. In
the case of the Cambridge students, provided each student in the
population was given the chance of being chosen more than once
(i.e. provided the disk is returned to the box), the choosing of
466 students at random is equivalent to making repeated trials
466 in number, the probability for choosing an honours student
being constant from trial to trial,

Ezxample. A population is composed of equal numbers of redy,
and white disks. These disks are identical in all respects execept
for colour. A disk is chosen at random and replaced '8‘.1:11'_132195.
What is the probability that this sample of 8 will be-thade up
of 0,1,2, ..., 8 red disks?

We may assume that the probability of obtainiig a red disk
ab a single trial is 1. It is stated that 8 trials.Are made. The
required probabilities are therefore given bylshccessive terms of
the'binomj_al Gps. x

Ezample. In the 8 offspring from the mating of a hybrid {Aa)
and a recessive (aa), 7 were ohgétved to be hybrids and one
recessive. Is this result exceptional? :

Following the genetical Kypotheses (see Chapter vim) it is
clear that the only offspring from the mating Aax aa can be
hybrids (Aa) and recesgives (aa) and that these may be expected
to occur in equal numbers. In other words, the probability of
obtaining a hybrid' is 4 and the hybrid and recessive are the only
possible propexties. - It follows that the probability of obtaining
7 or more Ph\\an 7 hybrid offspring from such a mating will be

¢.::' 8! ]- 8 8! 1
. N\ - - — (}

We interpret this probability by stating that, on the average,
seven times in 100 we should expect to obtain 7 or & hybrids in
& family of 8 and we cannot therefore consider that the reported
7 hybrids are exceptional in number.

Let us return now to a study of the binomial probabilities
generated from (g+ )" This series of probabilities will only be
symmetrical for p = g = }. For p greater than 1 the largest term
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will be towards the right of the distribution, for it is to be expected
that if the probability of success in a single trial is large then the
probability of obtaining a high proportion of seccesses would
also tend to be large, The position of the largest term, or of the
two largest terms, may be found by means of two sim ple
inequalities, -

1t has been shown that

(g'i'p)ﬂ=Pn‘0+Pn.1+"'+Pn‘fc+"'+Pﬂ.n° S
Let the largest term be when % = k- Tt will follow that O
e\
. Pﬂ_ko_lan.ko>Pﬂ_kn+1. Ay
Consider first the left-hand inequality. Substitubing for P, K
and F, ;. _, we have S

n! N
O A e e T
from which it follows thag \ \ N
(n+1) p,
Similarly it may be shown from the right-hand inequality that
Ty s+ 1)p— 1,
s0 that (nf\i’jpkk,])(n-r-l)jp—l.

The largest berm q;\ﬁhé_binomjﬂ,l series may therefore be found
quickly for it is \the term corresponding to the integer which
satisfies this imeyuality,

Example :F‘md the largest term
Here p =38nd 2 = 8 and we have

N 452k 535,

in the expansion of 3+ 3

(1) -+ 52, (3420, (3+4)0.
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however, we shall not be concerned with the term of greatest
probability, for it is not of much utility in statistical theory. We
shall consider the two other collective characters, the mean and
the standard deviation of the distribution.

A knowledge of the moments of the binomial distribution is
necessary for several reasons. First, by studying these moments
and the derived collective characters £, and f5 an idea of the
shape of the distribution can be arrived at just as quickly as
from a study of the most probable term, and possibly more

accurately. Secondly, in cases where it is necessary to APProxim,
mate to the binomial by some frequency eurve it will be necessaty </

to know at least the first two moments. Thirdly, in fitting \the
binomial series to a set of observations it is usnally necedsaty to
estimate hoth n and p. This may be done most quickly hiyequating
the mean and standard deviation of the binomial'séries to those
calculated from the ohservations. We shall therefore extend the
framework of our theory and derive the mome\nﬁ of the binomial
series. \®

TraroreM, If the probability of the sieéess of an event £ in
a single trial is constant and equal9*p, then the theoretical
distribution of the probabilities of-abtaining 0,1, 2, ... successes
in # trials will have the foﬂowing; JMfirst four moments:

(1) Mean = uf = np, 42) Variance — Ha = npg,
(3) #y = npalg —p), (4} sty = npg[l + 3pg(n— 2],

where g+p = 1.¥ . A

The caleulation of fhse theoretical moments may be exactly
paralleled in the readet’s mind by the caleulation of the moments
of any given freGuéncy distribution, such as is worked out early
on in statistical'practice.

Regarditig the probabilities as frequencies we have

.

O n
~\ Mean = pf = —

* 1 _

) E=0

where k' may be compared with the distance from the arbitrary
!

origin and F(';;—k)' P4 * may be compared with the group

* It is assumed that the student will have read enough statistics to
be familiar with the notation for moments. Briefly g1 indicates the Zth
moment about any arbitrary origin, and #y indicates the kth moment
ebout the mesan,

Q"
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frequency. There i no need here to divide by the sum of the
“frequencies’ because in this case it is unity. If the term np is
teken outside the summation sign it will be seen that the terma
inside are simply another binomial series with 7~ 1 as index
 instead of , and are accordingly equal to unity. Hence

Mean = u; = ap.
~ The variance follows in the same way.
N\
2 ! n n!
A S S S _ Bk
= o T A L R P S A
whence _ o = n(n—1) p? +np, O

Applying the correction to H, in order to obtain tlre '\'}'ariancc Has
that is the second moment about the mean, we Have

| P = =1 = mpg. NN
“ . N7
P2 R e T Y

Similarly

- 5 e 13 (% — 7 __" n! _
Ji=E]n[k{ 1)k .2)+~3{g’(’k 1)+k]mﬁpkgn K
= ®n—1)(n—2) p*$B3n(n 1) p*+ np.
n 1
&ﬂd - k‘l A kan-T
#a iEn f"z-’(’%—kﬂp e

: n }\"
| =‘k§&[k k—1}{k—2) (k—3)+6k(k—~1)(fc—2)

P\ !
T D R e

O
\% =a(n—1)(n—2) (n—-3)pt
A +6n(n—1)(n—2)p3+7n(n—l)p2+np.
L will be necessary to convert g A rbi
O w #a2 and g from the arbitra
\/otigin to the mean, These correstions are ) °
Ha = fiy— B i + 972,

' o= i~ dpip - 8plpie Byt

and using thege relations easy algebra giveg

- #4 = npgfl 4 3pg(n— 2)],
which proves the theorem,
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As a corollary it is straightforward to show that

4 _ 1 4 Ha 1-6pg 2

A 3 g n P 2 npg * P b .
Example. In 103 litters of 4 mice the number of litters which
contained 0, 1,2, 3,4 females were noted. The figures are given

in the table below:
4 Total i
s
T\

(1) If tho chance of obtaining a female in a single $rial
is assumed constans, estimate this constant but (mﬂmown
probability. . D _

(2) If the size of the litter (4) had not been given‘,;how could if
he estimated from the data?

(3) How could the assumption that the c}éﬁce of obtaining
a female in & single trial is constant he tested ?

{1) The mean of the observations giﬁ{eﬁ is equal to
T53[8.0+82.1+34.2+ 24334 5.4] = 1.864,
If it is assumed therefore that j:lié’ﬁ;mber of litters in each class
divided by 103 is an estimate of the binomial probability in each
class we shall have bp = 1-864

Number of female mice

L1

Number of litters

whence, since » is giyré)\equal to 4, it follows that p is equal to
0-466. O
(2) If » is not'given but must be estimated from the data it
will be necegs@r'}"to calculate the variance of the given observa-
tions. This\s’equal to 1-030. We have, therefore, equating the
theoretigal variance of the binomial to that of the observational

data (Hiht npq = 1-030,
3
D}ridjng by the relationship
np = 1-864,

we have g = 0-553, p = 0-447 and » accordingly approximately
equal to 4. Since in this case # must be an integer we should have
no hesitation in estimating the litter size as 4 and readjusting the
probability accordingly.

neT ] ki1
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(8) There are several ways in which the adequacy of the
Initial assumptions may be tested. The simplest one perhaps is
to. calenlate the frequencies as given by the terms of the
theoretical binomial

103(0-534 + 0-466)¢

and compare with the actual frequencies.

Observed frequency 8 a2 34 24 5 103
Theoretical frequency 8 29 38 23 5 103N

There is no need for a further test here to find out whethep the
theoretical hypothesis as given by the binomial adsquately

- describes the observational data. The agreement between theory
and observation is good and we may sey that thers is no reason
why the probability should not be assumed eonstant.

Ezercise. A cast of 12 dice was made 26,306 times and the
frequency of dice with 5 or 6 points uppermost was recorded.
W. F. R. Welden found the following-@istribution:
Npmberofdiewith 0 1 2 3. 5 5 7 5 o101112

5 or 6 points N
Observed frequency 185 1149 3265 5425 6114 5104 3067 1331 403 10514 4 0

‘Check whether the mathsmatical model whereby all sides of
a die may be assumed equi-probable is suitable for this set of

observations and caldalate the theoretical frequencies appropriate
to the binomial hypothesis.

Hwercise. Axpodden target is divided into 1000 squares. Shots
are fired at™the target, the aiming being supposedly random
within @h\e}fea of the target. The distribution of the number of
shots'}'{l{ any one square is the following:
Nutnher of shots B) 0 1 2 3 4

K within & square

\Number of Bquares 0 1 4
N/ with k shots

5 8 7 8 9 10 11
10 8% 100 213 204 192 79 18 =2

How could the hypothesis that the aiming was random within
the target area be tested from these figures?



The Binomial Theorem in Probability 35
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W. Whitworth, Choice and Chance, again provides many examples
necessitating the ealculation of a binomial probability for their solution.
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oxamples.
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CHAPTER IV

EVALUATION OF BINOMIAL
PROBABILITIES

It will not have escaped the notice of the reader that the
evaluation of binomial probabilities if », the number of trials,
be large, will lead to a certain amount of somewhat tedions
arithmetic. The evaluation of a single value of P, ,may Koarried
out fairly quickly, provided tables of log-factorials a:né}@,vailable,
but it is rare that a single probability is required"More often
than not in statistical Practice we are concegned with finding
the probability of obtaining a number greatér'than or less than
a given number and it becomes necessary; toevaluate the sum of
anumber of binomial probabilities, In-€hi§ case the caleulations
are frequently lengthy and allow mweh scope for error. It is
worth while therefore to study such methods as there are for the
evaluation of such a sum, and 0, onsider what approximations

to the binomial series have been made. We shall do this in several
stages, -

74\

AN\

L 3

&> :
1. RELATIONJ;\ETWEEN THE BINOMIATL SERIES AxD
TEEINCOMPLETE B-ruxcrion Rarro
N <
The eon:}&late B-function may be defined ag
0 1
Q Bis,7) = fﬂxﬂhl(l —xy-1dg
and-the incomplete B-function as
O o
Bys,7) = Lx‘*‘l(l ~2)"tdx for O<t< L.

Provided s and ¢ are integers the complete B-funetion may also

be expressed in terms of complete I'-fanctions ang thence in the
ratio of factorials, viz. -

“LOTE  s-1ip-1y
0= T = e ot = B
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The incomplete B-function ratio is the ratio of the ineomplete

B-function to the complete B-function. In statistical practice
it is commonly written '

- 1
Ifs,r) = g‘((i’:)) =f:x~"—1(1—~x)’“1 dx/fo_x“’"l(l —zydz.
We begin by considering the incomplete B-function ratio,
Lk, n—Fk+1), where n, % and p have their usual meanings.
From the above definition :

Lik,n~k+1)= ! _fpxk“l(l — )" gy O

»l% k=)l {n—Rk)1), O
The function may easily be evaluated by integrating })y"ﬁa’rts:

k(1 _ myn—k& ) ¢ g"
J.pmk-l(l —z)rFdy = P (1—__kp) NS
0 )
(n—k) .. .y (kD! {n—E)!
X S 1 —pyr—k-L1_ N T
T N

Writing ¢ = 1 —p it follows that P \4

- . n! k n—-’c‘"’:; “
Lka=kt1) = gy = asrp 7

AN
. E+l an—k—1 H
+{k+Q1(n—k_1)1P LA RS

which is equivalent to Wﬁg that
. r=n
Ip(k!n_k"!"l) = Pn."?c,t+Pn.k+1+”' +E..= 3 Pﬂ,_r = P{?‘2k}
- £/% r=k

AN

It will be recoghized therefore that, provided the incomplete
B-function ratiois tabled, the sum of any number of binomial
terms maybe obtained. For example, if the sum of a number of
terms fedm %, to k, is required, then this is the difference of two
inconiplete B-function ratios, and so on,

bles of the incomplete B-function ratio were prepared in the
Biometric Laboratory, University College, London, and edited
by Karl Pearson. The function I(s, r) is tabled for r over the range
0 to 50, and the values of s for each particular value of r extend
from s = r to s = 50. The argument of ¢ is in hundredths. Thus in
the table entries it is not possible immediately to extract the
incomplete B-function ratio if v > s. This omission was, however,
deliberate in order to cut down the length of the table, gince
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a simple mathematical transformation is all that is required in
such cases. We have noted that the incomplete B-function ratio
is defined as
:  s+r=1)1
M) =z D r—1)1

Write 1 ~« = y and we have

1
f =11 —x)-1dy,
0

(s+r—1)! r .
Lis,r) = m[ﬁy’ H(1—y)p-ldy Q)
1t .
B P A s ) d;?f} )
0 "\
that is Lo,1) =1~ 1_{r,s). "

* Hence the incomplete B-funetion ratio can be detei'l;:ined forany
value of » and ¢ between 0 and 50, This would‘%uggest that the
largest value for # would also be 50, and this would be so for
& complete enumeration of the binomial ferfes. If, however, the

- sum of terms is required for some % >ap:it will be seen that it is
Possible for % to be greater than 50"ahd that the extreme case
which may be evaluated will be fork = 50 and 1, = 99.

In such tables we have the’x}ef‘bre & weapon of great utility

the ta.b'les i? Wﬂl bfa Necessary to use an approximation. Such
appr(?mmatlgr{s Which do not involve more ealeulation than the
working oub\of the binomial terms themselves are not valid for
n small buttnay be used freely for u greater than 50,
:'\:j 2. APPROXIMATION TO THE BINoMIAL SmRIES

~\. USING A HYPERGEOMETRIC SERIES

It has been Pointed out by Uspensky* that an approximation

to the binomisl serjes tgin i i
o ; g properties of the hypergeometric
Series, was pub forward by Markoff and that this a,pprf;gximation

- s . .

deve;](.’)h:dan.a.lgms of thig section follows directly along the same lines

referenI::es a,::nt.th:ngm;'tiﬁe bls: G Uﬂpenaky and J. Miiller {See
na o chapter.) M o

2y Uspensky, although T havepinsegtedy e ol closely that given

; ? me; i
0. general his proof capnog be improved upfﬁn.detaﬂ, Beoauso I feol that
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has not received the recognition which is undoubtedly its due.
This is, possibly, owing to the fact that the normal curve is well”
‘tabulated and the effort involved in approximating to a sum of
binomial probabilities by part of the area of a normal curve (ses
next chapter) is very much less than that involved in Markoff’s
approximation. Nevertheless, the hypergeometric approxima-
tion needs fewer mathematical assumptions than does the
normal approximation and for this reason we shall deal with it )
in some detail,

It is required to evaluate P{k>k,}, that is, it is required o,

evaluate ' O
o8 nl "
P o ' ky+1gm~Tey—1 N
R 1 V1 ey s L D
n! R S LAY

TR SN
The assumption is made that k; 2 np. Th@{a}sumpt-ion i3 not,
NS
however, restricting, for if &, < np then Eg?,;_ x could be evaluated
: o=
by this same method and- subtracted from unity to give the
required probability. The first tefm of the required sum may ho
put outside a bracket as follows®
n 2! &
_P = =<3
v T Gt DIk 117

x[l,\{:ﬁfkl_lf =k —1)(n—F, -2) %2_‘_]

B3 qn——kl —1

bt2 g7 et 2){l+3) g
and this outsi@ébt%rm may be evaluated quickly with the aid of
tables of l%factorials and logarithms. It remains therefore to
sum thgﬁflite series within the brackets which will be recognized
as g pérticular case of the hypergeometric series
@p > oot )fp+1) 2

vy 1 ¥y+1) 21

Fla, B,v,2) =14
where
a=-—nt+ky+1, B=1, y=k+2, z=—p

If we define
KXon = Flatn,f+n,y+2n,2),

Konin = Flatn, f+n+1,y+2n+1,2),
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easy #lgebra will verify that

Xy, = Flatn—1,8+n,y+2m—1,2)

() y+2n-1-a-n+1)
o1y 2m)

B+n)(y—a+n)
(v +2n—1)(y+2n) " "

(a+n)('}’“ﬂ+n1_ . R
(y+2m)(y+2nt1) T2 (O

N
Writing a,, and a,,,, for the coefficients of X 20 g ‘3‘1-?1“(‘1 Xonis
respectively, we shall have generally O

\ "
Xor=X,—0,X, 2 N >

Flat+n,f+n+1,v+2n+1,2)

or Xon = Kgp g +2

Similarly X,,,, = X, +2

Hence, if we give » values 1, 2,... successiyely, we obtain a series

of relationships between the X’s the fitst’of which will be

) IO X
Xo=X;-a,X,2 or"”?X_ll]::—_ 1/[1 —alz—};;?] .

1

By utilizing the successive celalﬁonships we may write this down
- a8 & continued fraction N

Fy 1
& Tz

; “ l-g,z

A\ 1-
~0 "y
\° X,

N\ Xy’
]@t Xﬂ = 1 and

\3...: X, = Fla, f+ Ly+l,2) = F(—

"kt 1k + 2, —plg)
80 that

@=-—n+k+1, g

=0 Y=kt 2=y
Writing

' dw = Ty, Cy = TR
It may be shown by substitution that
0(n+ )

y= Vo) = o0k +w) p
(k1 +20+1) (b, 90) g* {k1+2w—11)(ki+2w)§'
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Hence if § is the sum of the hypergeometric series which we are
proceeding to evaluate, i.e. if

n__kx__lﬂ (n—k—1)(n—F —~2)

:pﬂ *
S N R T
- X, 1
then Ry X, " T-q
1+4d,
1—g,
174, .
1-— 2\
S\
_ Gnga AN
l+dn—k1—1,~.f 3

Referring back to our definition of ¢, it will be 3dett that if c, is
positive and less than unity so will be all thejether c’s. ¢, was
defined as ok — 1P g
6y =——*%
_ kh+2 g
k, is essentially positive and less.ﬂ:isin 7, p and ¢ are positive
fractions and = is & positive integer.’ It follows therefore that £y
is positive or at least zero. For'e; to be a fraction it is necessary
that

i N

N/

(b +2)g>(n— k<Y p or Iyt 25np+p.
Tt was assumed that kl\%\np, so the inequality holds good.

d, is essentially pesitive and, accordingly, if we consider the
sum of the continued fraction

\\“ 5 = &
OF wmi,
~: 1—eiy
O .
it s glear that ¢; >3, >0 -
an(?. that 8 =7 i
1— 81 '

This last expression will give us all that is required for
evaluating 8. The necessary steps in the calculation will be:

(1) Choose ¢ to be any number desired., Obviously the greater
¢ the more accurate will be the approximation. Uspensky
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suggests taking ¢ = 5, but this is only something \:vhich may be
leatnt by experience and it may be possible to take ; smaller than
5 for certain values of n. It will not pay to make? too large because
the approximation will not then save a great deal of calculation.
(2) Having chosen ¢, calculate c,,,, thus obtaining the upper
limit to the inequality Cpun > B0g > 0.
(8) Caleulate d; and ¢; and, using the limits for s, +1: 0P bg:.i\n
Limits for s; from the relation
G 7 '\: N
1+d 4 6\

- e

8%:_

-5y N
(4} The calculations (3) are repeated to ob’Qﬁi successively
limits for ¢; 5,8, ,,...,8, §. 8
* (5) The binomial term ontside the brac ab\is evaluated either
directly by logarithms orby means of an inequality discussed later.
(6} The multiplication of the resultsof caleulations (4) and
{6) give an approximation to the :réquired sum of binomial
probabilities, \\

Ezample. Find 3 Pn_kjﬁ;}i%n % =80,k = 40, p = 0-4. This
e T .

may be evaluated direCtly and exactly from the incomplete
B-funetion ratio tables>» We have

PSR} = I,(41,40) = 0-0271,236,

In practice we-shéuld not contemplate using the bypergeometric
approxim@tipx\l If the exact value could be obtained from tables.
Howevg;;i for the parposes of illustration let us apply the theory
Whicl%r&e have just outlined, Fivst it is hecessary to test whether
thg:c;:m ¥ assumption holds. Is %, > np? Here k) = 40and np = 32
2d we may therefore Proceed, '
)~ (1} Following Uspensky let ug choose ¢ = 5,

(2} 0<s,<0-39316.

{3) and (4) give

0-42857 011111 0-36294 < 55 < 0-38571
(-46809 0-0052¢ 040526 < o, < 0-40727
0-51240 0-07678 045364 < 51 < 0-45381
0-56237 0-05522 061078 <, < 0-81075
061805 0-02990 D-58340 = =0-58540

8 = 2-40038
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(3) The binomial term

% |
o+ 1) (o= Fey—1)17
80!
41139

(6) The required sum of the binomial probabilities is 0-027124.

It will be seen that this agrees well with the value as calculated
from the incomplete B-function ratio tables but the ealeulation >
involved is rather heavy. Even so the calculations are fow in
number compared with those which would be necessary in or'c‘.[?ér’
to evaluate the binomial series term by term. The hypergeametric
approximation involves no restricting assumptions and.may be
made as accurate as desired by increasing the size ,éf"i' which is
at choice. It should therefore be used for sums~of binomial
probapbilities outside the range of the B-functienratio tables for
which a definite accuracy is required. We shalldiscuss later other
. approximate methods which give the sums.of binomial probabili-
ties quickly, but these approximations {the normal curve and
Poisson’s limit, treated in succeeding chapters) rest on certain
mathematical restrictive assumpbions and it is not always
possible to judge the accuracy 0fthe results obtained from their
use. While therefore they niay be adequate for the rongh deter-
mination of a prohabil'tjgle*&el they are certainly not satisfactory
for calculating a sum ;}‘terms when other calculations are to be
based on the resulty ™’

Ezercise. Givenythat the constant probability that an event
will happen i &' single trial is 1/3, find the probability that in
100 trials 45,01 more events will happen.

Eaercises A halfpenny is tossed 200 times. The head fell
uppermost on 153 occasions and the tail on 47. If it is assumed
thit $he constant probability of head or tail in & single trialis 1/2,
would you eonsider such an experimental result to be exceptional ?

Ezercise. Consider Weldon’s dice experiment of the previons
chapter. Evaluate the probability of obtaining 9 or more dice
with & or 6 uppermost when 12 dice are thrown.

Futlgn—iey =1

(0-4)41 (0-8)%¢ = 0-011300.
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Sorwi=n) (2]

) 3
) 3

3. APPROXIMATE EVALUATION OF A SINGLEL
BinoMIaL, PROBABILITY

When the » of the binomial series is small it is an oasy matier
to evaluate any given binomial term. When » is large it will be
necessary to refer to tables of log-factorials and it is possible that
occasions may arise when these are not readily available or, as
is sometimes the case, the binomial index may lie outside'the
range of existing tables. It is rare however, that the camputer
has not access to tables of logarithms, and it is useful'thetefore
to give inequalities for a single binomial probabiji‘qy\when the
binomial index is large. These mequalities wiljygecur again in
& slightly different form in the proof of Lapl@@&g theorem (next
chapter) and the approximation will accordingly serve the further
purpose of making the reader familiar withthem. Itis required to
evaluate _ M

n! N\
Pn.k = W_W Prgnk,

when- %, k, and n—k are a,]llé,rge numbers,
Tt is known by Stirling’s theorem that

= (2mmt g g-msom)

X\
where » P <f(m) < L
Q" 12m+ 6 12m°
Expaqd\ilig ‘the factorials in the expression for P, | we have
K 4 \ - F, it ke

n-—k

From the inequalities for B(m) given above, since % is greater
than & or n—Z it will follow that

1 1
128" B3(n =)~ 135> OB} + 601~ k)~ B(m) >

( g )ﬂ,_k = oxp [f{r) —6(k) - 6(n — k)].

| 1
12k+6 " 12 ~%) 46 12n 16
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and therefore that

oxp [1%“@" 12(n—k) .
<exp [A(n)—6{k) —Bn—k)] <

1 1
oxp [12-:1, 16 1246 12(n-L)+ 6] ‘
Hence

1 11
P | 12n 126" 12(n—1)

KeN
B, . \J

e

1 L& :I
“Pl1onr6 126+6 12(nok)+6]°

all the terms of which can be evaluated by log&{thms.
Example. Test this approximation forphe\binomial term

80! P\
4113091

the exact value of which is 0- 01.13‘30
We begin by evaluating the divisor of LB, » by logarithms.

: op m__ — 0
(27ﬂcn k) (\\) 0-011335.

The left- and rlght»ﬁand sides of the inequality may be
determined eithel from tables of the negative exponential
function, or by}og&nthms, or in this case perhaps more easily
from the ﬁ{strthree terms of the negative exponential series,
Thus
Ny

P 3 -
\‘; 99688 < 553 011335

which gives ~ 0-011830 = P, , = 0-011330.

<

; (0- 4)41 (& 6)3'.;

< 0-09692,

The approximation in this case agrees with the exact value to six
decimal places,

It will be recognized that, provided tables of the log-factorials
are available, there is no advantage in using this approximation
in preferonce to caleulating the exact value; for the arithmetic
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involved in the use of the approximation is, if anything, a little
heavier than for the exact value. If, however, no tables but
ordinary logarithms are available then the approximation must
perforce be used.

Ezercise. Caloulate the exact values of the binomial prob-
abilities for

) n=20, k=11, p=04;
(i) n =200, k=110, p=04 )
and compare with the approximate method. \
O\

N

REFERENCES AND READING )

Further illustrations of the hypergeometric approxifnhtion may be
found in J, V. Uspensky, Introduction to Mameﬁgﬁical Probability,
whose proof of the conx exion between the hypergedmetric approximation
and the binomial series has been closely follg here. The connexion
between the binomial series and the incomplote’ B-function ratio is well
known. Tt was given by Karl Pearson{who belioved it to be new
(Karl Pearson, Biometrika, xvr, p. 202 :‘Not,e on the Relationship of
the Incomplete B-function to vhe sum of the first p terms of the binomial

- (@4 B)*), but it was almost certainlykmown before this century.

The hypergeometric approxzimiaition has been discussed by J. .
Miiller (Biometrika, Xx11, p. 284, ‘Appliestion of continued functions
to the evaluation of certdin integrals with special reference to the
Incomplete B-funetion ¥ :Miiller believed his mathod to be original. It

does not appear, ever, to differ greatly from that outlined by
Uspensky and attributed by him to Markoff.

7,

o\'.‘



CHAPTER V

REPLACEMENT OF THE BINOMIAL SERIES
BY THE NOBRMAL CURVE

The fact that it is possible under certain conditions to replace
& binomial series by a normal curve has been known for many
years., The first derivation of the curve was given by Abram de
Moivre (1718) in The Doctrine of Chances and he derived it in
order to be able to express a certain sum of probabilities. The\
formula was not, however, stated explicitly as a theorem and, it
was not until the advent of Laplace (1812) with his Tkeqm&.des
Probabilités that the relationship between the binomig) series
and the normal curve was given clear mathematical{éxpression.
Since Laplace it has become increasingly frequent for those
seeking to give numerical form to the sum of a/given number of
binomial terms to refer to the normal appro}‘tma,tlon and the
tabled areas of the normal curve are used forsuch evaluations on
occasions when the restrictions and asgumptions of the approxi-
mation can hardly hope to be justifigd. We shall try to show at
a later stage the limitations withiny which the application of the
theorem may appear to be legitimhate. The theorem may be stated
in m&ny forms. We shall sj;a"té it in the following way:
\\
LAI’LAGE 8 THEOREM

If i the number of absolutely independent trials, such that
in each trial hﬁ*probablhty of a certain event ¥ is always equal
to p, whateyex the result of the preceding trials, and if k denotes
the numbériof trials in whick an event & occurs, then whatever
the naq’:tl}efs 2, and z,, where 2, < z,, the probability

k—np e
Pl [ <) g ) e 98 me

Before proceeding with the direct proof of the theorem it will be
convenient to begin by stating and proving a lemma which will
be necessary at different stages of the proof. This lemma appears
to be due to Duhamel,
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Lemma. Consider two sequences of positive sums
8, S .., S, -

El’ 22: mEny E'n,! *eta
such that .
N Moo . _
S = 13.2—_:‘1Pn'£’ 2 = iglpn'i’ and ﬂ]LD:DNn = .
If, whatever >0, it is possible to find »,, such that
' N
EP“"’—l <e for +=12,..,N, and n>n, ,
. Pﬂ,,{. 4 ’\..‘\
then the existence of a finite limit QO
. lim Sn = S ’"‘( ‘.;«:
. . > i ,\.\"
implies that of %, namely QO
lim ¥, = lim 8, =)
0= 0 >

and converscly. N\

Proof of lemma. If 8, tends to a @fliﬁe limit S then there exist
fixed numbers M and n,,; such that for any n > n,,, 8, < M. Write

X

4 ™
Pn'.k_‘Pn.k = eﬂ.kPn.k .

*

Sum and take absolute ya’lﬁés. We have then

No LN K, Ny
2 EN- 5 B <2 B ilensl-
A= E=1 k=1
Consider any 7 ag-small as desired and write

\$/ e=n/M.

Ifnis gﬁé&};r than both ny, and , then we shall have both

,J% Sp<M and e, ,|<e
Hence :

Y
\ }
Now 5 may be chosen as small ag d
if 8, tends to a finite limit § th
the lemma, is proved.

Proof of ;heowem. We begin by rewriting the probability

i
i

Ny . Np ! Ny N,
EPﬂ.k_—ZPR..k gEat‘klen.k[{ezpn.k{€M=?f‘
=1 pran F=1 E=1

esired. It follows therefore that
en 2 tends to the same limit and

_k—np
-P{zléq@aézl as P{WHN(HMJékénmzm/(nm)}-
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Denote by %, the smallest integer such that
np + 2,4/ (npg) < ky,
let k&, be the largest integer such that
np + 294/ (npg) > ks,
and substitute in the probability _
Pinp+2Jnpg) Sk <np+2,J(npg)} = Plly <k<hy)
=Pk =k)+k=R+1)+...+& = &)}

The probabilities that % — iy and the succeeding terms 4TS,
binomial probabilities as given in the statement of the the'oi*em

Hence (».;.
Pl = b))+ =+ D+ ...+ (k= ky)} R
L2 P &y R\",
=k=21k1 .k _I;thl(?‘b\—‘k)]fpg

We want to find an approximation to thlsbum and we therefore
look for an expression P, ;. If an expressmn P ;. can be found

Buch thatv .P ¥ R

ok 1 ,,::' 6‘ »

Byx JON e
and if for any number ¢ > 0, whete ¢ is as small as desired, we may
find a number #,, such thaj; for n>n, and by <k<ly

\\ Ienk|<e

then, by Duhame} 8 Iemma if there is a finite limit to k}]k P; .

there is a hn;:i\to Z P, , and these two limits will be equal.
K=k

Stirling’s expan310n for #! may be written in the following

form fo;r' 7 large

\M‘: ) nl = 0o exp[ ( —1%1—)] J(2mn),

where 0«0, < 1. Expanding the factorials in F,, ; by means of
this expression, after some arrangement we obta,m

! ke np Ic-f—ir( ng )'n,—k+i
P"‘"‘=k!{n—k)lpfgﬂ —(k) n—kl

o -]
* J@anpg) P [12n 12k 12(n—k) |’

oeT 4

Q!



N\

. containing the, s accordingly becomes

RN\N
£\
/N
\

) We may
left-hand sides of the i
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where 0<0,,0,,8,, <1. Write P, ; equal to the terms on the

 right-hand side which do not include the exponcntial and it

follows that

Puk. b b, _ 0O __]
P, exP["Wn+12k+12(n_k) '
Since #, k and #— k are positive numbers and 0<#,, 7,, 7, <1it

is clear that ~
1 01 62 93 1 _1_ O
IR PR TT A Ty s R T AR T AT

N\

but the right-hand side is dependent on % as well ?‘5:??"-. Now by
definition &, is the smallest integer such that K7,

\.

AN

_ ky > np 42y J(npg)
and it will follow therefore that 7 \d
By NN
| 12k ™ 12(np + 233 (npg))
Similarly from the definition of k, it will follow that
.1 ‘f{’.' ' 1
- 12(’»3'(?02) h W )

?ﬁ‘heae infaquailiti &gﬂl bold good for any %, such that ky<k<k,
if we write % ingtead of k; and k;. The fundamental inequality

- 1 6y by 2
S TRl S I S
2O T T 2kt g <
A\ ' 13

1
ST W e RS S
Y2000 + 2, NT0pq)) ¥ 180 <y Jpa)
0w choose  as large ag required 8o that the right- and

mequality will differ f (4]
as desired. It follows that, by °r Irom zero by ag little

a ) 8
e -1, Y 3
' Xp[ I2n 12k+f2_(¥:k“)]
will djﬁ'er from ]]I}i‘[‘,y by as httle a . .
X 8 desired and that P! , will
therefore satisfy the conditions of the lemma. We may pr(.Ji;eed,
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kn '
then, to look foralimitto . P, , knowing that if it exists then
k=k]_

. ¥y
it will be the desired limit of Z Pﬂ. &+ Pn.p was defined as

P 1 (np)k-&-} ( ng )'n—k+§
nk = 2mnpq) n—k )

Write k= np+z.fnpg),
where RS 1N

If we denote by Az the difference between successive V&luespf z\
it follows, since & may take only integer values, that 3
k+1 = np+(2+Az) /(npg), \\\
from which it is obvious that \Y%
Az 1 oY
| V@) T (2rnpg) N
and that Az tends to zero as # increases' wlthout Limit. Rearrange

’.

F, » and take lIogarithms, N

.

logP’ = logJﬁg ; £k+§)log(l+zA/n§j)

m\ P
\\i* —(n—k—ké)log(l—zA/n—q)‘

"The last two terms' oh the right-hand side may be expanded as
& geries in the fo‘rfrf

N

Ve 3 x®
2\ =
A log{L+&) =2—7+3q +¢x

where, 0 | <1, from which, by writing B, , for the collected
terms of z%, we shall have

log P, , =log— \/(277) (,‘/ np nq)
I:l 1 (q*+ ;02)]
—-B, =2 ==} .
n. 2 4\ npg
The lsmma of Duhamel may now be applied again. Let

Az
log Py, ;= log Jem” "
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It will be seen that P2 ./P; , will differ from unity by as little
as desired for some value of # greater than a given number.

k
From the lemma, therefore,ifthere is a limit to Zs P} it willalso

K=k,
Ea g
be the limit to Y, P, , and therefore to Y, F, ;. Using the
=ty Bk

definition that a definite integral is the limit of a sum, we have

ngpkzmlﬁ—i4MM=_L¢}m&\
4 7@ Jem )"

- k=l f—=w k=l
and therefore N
" S aaed [eea
im = — 5 74
n—w® b=k ok '\/(277) s;e z’ g ’
and the theorem is proved. O
The £, and f, of the binomial series were shown to be
p=-L_% 4 @ﬁ%
Toapg w' TPAN apg

Px:ovided therefore that p remaing finite, it can be seen that as
7 Increases without limit A, will tend to 0 and B, to 3, that is to
the 8, and £, of the normalcurve,

Fro?n the definitions given in statistical theory of the moments
of a distribution there would appear to be no reason why the £
&1.1(1 Fy of the distubution of a variate which may only take
diserete valueg'should not be calculated. Yet in making such
& calenlationdhe student should ever bear in mind exactly what

g is he.’i:;déing. B E.]:a:nd A are two measures devised by Karxl
Gy t0 express skewness and flat:
N?é%h ness of frequency curves.

s © digtribution.of a binomial variate can never be a fre-
¢ %uency curve. 113 consists of a digerete set of points and can never
o~ Dbe the distribution of a eontinuous variate
'Il‘iljnz fact that this is so, however, does
seeking to express the sum of a number of binomial Probabilities
in terms of a continuous funetion, That w

. : e may do this was seen
in the last chapter when it was shown that the sum of a number

f " ) - AT w
Ehgyﬁzmmllprobabﬂxtmﬁ.; may be expressed exactly in terms of
omplete B-function ratio. Thers is no Teason why we

should not express the sum of g, number of binomial probabilities

in [ik :
¢ manner by means of an area of the normal curve, If it is

not prevent us from
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desired to find P{kz %}, where % is a binomial variate, then,
with the customary notation, we may reduce this variable by its
mean and standard deviation, i.e. :

k—np

A(npg)
and refer this to the extensive existing tables of areas of the
normal curve. Such & procedure is quite a legitimate one for it
implies the conversion of one function o that entry may be made
in the known tables of another function. O\

It may be shown simply, using the Euler-Maclaurin theorent, -

that a bhetter approximation to the sum of a number of bmgﬁial

terms may be made by entering the normal tables with,
~

k-np .

kE—npt}
Hnpy)”
A \
N

Wnpg)
Thus we may give the rules that A

X 3

et

instead of

1 C
\/_(2;5,“513@;_4
C linpg
L ot
and Plk< kl}«_»mf
3

These rules may be mieés:drized easily by imagining that thg
binomial probabilitiegmay be represented by a frequency distri-
bution in which P, {is constant over the range {(k—3) to (k+}).
Such an assumpt-idn is, of course, wholly fallacious, since the
binomial proKabilities are s discrete set of points, but it is a
useful aid €0 'memory if not pursued too tenaciously. Table A

below g'}{f{éé illustration of the effect of this corrective term.
The edses were chosen arbitrarily and it will be noted that in
eackcé,se the effect of the corrective term is to bring the normal
approximation more closely in line with the exact probability
enumerated from the B-function ratio tables, Even for # = 10
the evaluation of the probability sum, as given by the corrected
hormal deviate, is not very different from the exact value. This

Plle> by}

e t8dy,

-

1 .
* The reader may cornpare this correetive factor of m with the

‘eontinuity’ correction for 2 in the case of a 2 x 2 table.
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close correspondence for » comparatively small is of interest
because o far we have not discussed the appropriate number
below which » should not be taken for the normal approximation
to have validity; in Laplace’s theorem it will be remembered
that the area of the normal curve only tends to represent the
binomial sum as % increases without limit,

TaBLE A. Sum of binomial probabilities estimated by
an area of the normal curve

Pk} ¢

% k, g 4

# P q ky Exact Nom:tal( lrnp) N I(L-Tnp_ )
Jompgi) O e

W 03 07 5 | 0-1503 0-0838 £04503

M 05 05 5 | 0:6230 0-5000 £NB6241

0 07 03 5 | 0-0528 09162 0-9577

20 03 07 10 | 0-0480 00256 /Y 0-0438

20 05 05 10 | 05881 0-5000 '\‘\ 0-5882

20 07 03 10 | 049829 0-9724™ 0-9858

30 03 07 15 | 00169 0:0084 00143

30 05 08 15 | 05722 06000 0-5721

30 07 03 15 | 09036 o\ 0:0016 0-9952

™
3

. To obtain some idea of the, degres of approximation involved
ig difficult in that there ayeFarious ways in which it may be desired
to use the normal arfefs. It is coneeivable that an estimate of
each of the binomial probabilities in a given series may be
required. If p igWot very different from %, then for # as little as
5 the areas of $He normal curve will agree with each of the bi-
‘nonxial prababilities to within 1%, Forz = 10 the correspondence
is goodHowever, the main use to which we may expect to put
the '1313'1‘;31&1 approximation is for tests of significance.
o~Lhe f'st.atistician i concerned with the setting up of arbitrary
Probability levels whereby hypotheses may be tested, Because
these levels are arbitrarily chosen, the acceptance or rejection of
3 hypot_hlesis cannot be insisted on too rigorously if the caleulated
probability falls near the significance level. For example, if the
59, iev.el of significance is decided on ¢ priori, and the eal(;ulated
probabllity: was found to be 0-057, the statiséiciacn would feel no
Eore }t:erta,ltr;.l about tl}e acceptance of the hypothesis under test
an he would about its rejection for a ealeulated probahbility of
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0-043. In the absence of further evidence he would consider that
the issue was in doubt. It follows therefore that for approximate
tests of significance which may be carried out first of all on raw
material in order to make preliminary judgments, the reduced
binomial variate " k—np—1}

Jinpgy

which it is recognized may not be exact, may be used in eon-
junction with the normal probability scales. This is advantageous
in that the normal probability levels are easily remembered and\
a quick rough test of significance may therefore be made, "

If the rejection level is 10 %, then n may be as small as Sand p
may vary from 0-1 to 0-9 if a variation of 4 9} is allowdd th the
level, For instance, the error involved in assuming. normality
forn = 5and p = 0-1is 2%, at the 10 % level. A smaller rejection
level will not have much meaning for » = 5 \Jor n = 10 and
upwards with p varying from 0-3 to 0-7 theletfor involved is of
the order of 1 9, at the 5 %, level. The lowenthe significance level
chosen the more likely is the normal approxmatlon to be in error

. and at the 0-005 level only the valugp = ¢ = § will be found to

lie within 0-004 $o 0-006 for aslarge as 50 However provided
it is remembered that the test} is approximate then little error
will result from its use. As & “general rule it may be remembered
that for p < 0-5, whateyér n, the normal test will tend to over-
emphasize the signiffeance at the upper significance level, while
for p> 0-5 it will underestimate it.

Erample. The.proportion of male births within the whole
Population of the order of 0-51. A family is observed composed
of 10 malqa%nd no females. Assuming that order of birth does

‘ot affegbithe probability of being born male, is it considered

that.a ﬁmﬂy s0 constituted is exceptional? The probabilities of
Dbta‘mm% 0,1,2,..., 10 males in 10 offspring will be given by the

generating functlon (0-49 4+ 0-51)°,

~ Hence the probability that out of 10 children all will be ma,les

will be given approximately by

10-10(0:51)~ 05 o 05
(10 x 0-51 x 0-49)}

referred to tables of the normal proba;blllty' integral., The

Q
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numerical figure for the probability is 0-0027. That is to say it
might be expected that a family so constituted would ocour less
than 3 times in 1000 families composed of 10 offspring.

" Examgple. From previous experience it has been found that
when a river overflows on a road an average of six in every ten
cars manage to get through the flood. Fifty cars attempt the
crossing, What is the probability that thirty-five or more will
get through?

Here the generating function is (0-4+ 0-6)5° and O
Pk > 36} O
7NN “
is desired. Using the normal approximation the deviate'is
35— 30—0- 7\
5 o8, ¢

(30 x 0:6 x 0-4 )

giving a normal probability of 0-19. That.ig*to say, the chance '
is only approximately 4 to 1 that 35 ér more cars will get
through. 2/

Example. At a given dista,nce,;x' féet, from the explosion of
- & bomb, i} is known that the pro;babﬂity of a pane of glass being
smashed is 0-3. What is the probability that out of 100 panes of
glass situated at o feet Qfl‘dhi the explosion 40 or more will be

smashed? - N
The normal dex@e is
40—-30—-0-5

2O Tooxosx o = 207
and the-&qhival ility i
e-equivalent normal probability is 0-02. We should say

the;g@m that it is doubtful whether so many panes of glass will
besmashed at a distance « feet.

~ ‘:i? E-";“’*‘_”PIE- If the chance of a house being hit by an incendiary
N/ Pomb is 0-1 and if 25 bombs fall randomly within the area in

which the house is situated, what is the probability that the
house receives more than one homhb?
The normal deviate is

22505
(25x0Tx 00y~ 87

and the chance that the house receives more than one homb is
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thercfore 0-75. The exact probability calenlated from the
B-function tables is 1,4(2,24) = 0-74.

On three-quarters of the oceasions on which 25 bombsg fall in
an equivalent area, the house will receive two or more bombs,

REFERENCES AND READING

A detailed development of the replacement of the surn of a number of /4
binomial probabilities by the normal probability mtegral will be fmmd
in recent papers by 8. Bernstein, where the error term is included., € Y\ *

A simplified version of Bernstein’s theorem has been put forward by
J. V. Uspensky, Introduction to Mathematical Probability. D

A simplified version of the proof given in this chapter will ba‘fomld in
J. L. Coolidge, Introduction to Mathematical Probability. ,¢7»

Mozt statistical text-books use the normal &pproxunbtlon, with or
without the corrective term, with a cartain smount sf\bdiscrimination.
The student will find many examples to work fvhl‘()\létl ini such text-bocks.
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..\Hi(i're than a limit,
“\\probabilities,

CHAFPTER VI

POISSON’S LIMIT FOR BINOMIAL
PROBABILITIES

When p is very small but finite, it is necessary for = to be
very large indeed before the normal integral will approximate
to a sum of binomial probabilities. The incomplete B-function
ratio tables do not extend below p = 0-01 and it is ng'éeséary
therefore to find another method of approximating to the
required sum. This we do in Poisson’s limit £or\ binomial
probabilities, Y&

During a war the ideas of the individus} regé:rdjng the funda-
mental sets on which probabilities are caltulated are Lable to
vary according to whether he is exposed t&/immediate risk or not.
For exaraple, to the individual undprfﬁ-e the subjective prob-
ability set will be composed of t#o alternatives, survival or
non-survival, To the statisticiaﬁ;’however, calculating a prob-
ability on the total number of fetsons exposed to risk, the chance
of any one individual being ‘hurt was found to be very small.
In fact, many chances foi what might be expressed as war risks
were found to he smé}l} and examples for which Poisson’s limit
to the binomial wag'walid were numerous.

Poisson’s limitto the binomial, like the normal approximation,
has been ognsiderably misused in statistical practice. It is some-
times reféxred to as Poisson’s law of Small Numbers; a bad

nomeriglature in that the limit loses its binomial parentage and

may lead to misunderstanding of the fact that the ‘law’ is nothing

under certain conditions, for binomial

Porssox’s Livrr rog BIinoMraL
. PROIBABILITIES

Tl_IEf)REM. If n is the number of absolutely independent trials,
and if in ea.qh trial 1fhe Probability of an event & is constant and
equal to p, where p is small but finite, and if & denote the number
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of trials in which an event E occurs, then provided m and b

remain finite P ke
.k e A

as n increases without limit, where P, , hag its usual meaning
and m = np.
It is convenient to begin with a simple inequality.* If

' Igagp-1,

I S

where n is a positive integer. This inequality is self—ew’dent

From this inequality it is clear that if {..;"
- (ﬂ—a)) <
2 _ % - R
-1 n)( S
-1 EYRN
then ( _ A ) < T2« Q
7
- A1 -1
and (l—é) T<(1w——) .
n 2n
We shall find it necessary to use “the inequality in this form.
P, ;. is defined as N\
m" n[ kgn—k
B g B (n—k)!

Writing m = np andxea,rmngmg
o 1) (l_w— 1)) |
xo\’.," X 7% o 7 (l_ﬁ)ﬂ.
sl ! n)
W (-2 1—9)...(1-—) .
A\ n L E
~O v ={1 _@)n_kinj kﬁl (1 __,t_)_
A\ ) n kli=o 7
APPIymg the fundamental mequahty we may obtain an in-
equality for P

AR~k gk JARICE) m n—kﬁ_@_’f B k k-t
(1~=) _”i(l—?—a) <Pn.ra<(1"f;) B\ TE)

% k!

* Sea J. V. Uspensky, Introduction to Mathematical Probability,
Pp. -13=J—7 The proof given here follows his cutline.
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Since %, m and » are positive it may be shown, by mecans of a
transformation of the fype

my" m
() -enfore 2]

R | A k n—kmz
that o (I_E) <exp|:—m+—m— o
AL k(k—l):l ' "
— . N
and (1 2n) < exX p[

The right-hand side of the inequality for P, , may thereﬁﬁ*e be
rewritten as follows:

. mE ko on-k e k(L 4}][

2, <gye epr: a'n————%?’Es Qn
00ns1der now the left-hand side of the inequality for P, , and
use.the same device ag before, PAY;

mi\n—k m O\ —r—k) '\‘
1-— =(l+—-—-.) "
” n—m O

o TR =) Wik m n—=1) m3__:|
>_exP_|: m+ n-ny'f‘—l-_-,‘z_(n—m)z_ 3 (n—m)®

JAR LA k-1 k(k—1
and (1—?—3) i‘£1+;1?¢) >expl:—ﬁ:|,
from which it fd{é\%{ that
bm n—km® k-1
g k>kl,e”merpl: 2w (2n :
\ I:l_ o (n -k m3 kB
\w 3 (m-mp 2n(n— k)):| ’

where 0<8<1. If therefore we write

_ km  n—km? k(k—1)
v exp[n 2 2n

ot

\3
. and | d=1- l:,_k m?

kS
{n—mp 2n(n—-k):|’

the inequality for B, ,, becomes

Wﬂa—;;"—':’“—- <ir.@.

e
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Now provided & and m remain finite as n increﬁses, ¥ and 6 will
differ from unity by as little as desired, and therefore both sides
of the inequality will differ from unity by as little as desired.

It follows that mb .

Pn‘k—>ye*m as #->o0

provided both m and k are finite.

Under the assumptions through which the Poisson limit is
reached it would be possible intuitively to write down its
moments, They are, however, quickly reached by the elementary

method previously used for binomial probabilities. If R\ \)

P . % 5
P~ %tre“”" = lim P, , (k and m finite), ~\
@ mk ..‘&{ .
then .= —— e, \/
e = 2R R
from which it is seen that A

M=m, py=m, fig= m,g,g;\*= 3m2+m
1 o\ + 1
and : 1.= E: ﬁ2v=’”3’+a-
One point should be noticed hére. The summation for moments
was taken over the range b&N0 to k = +c0 and not, as is strietl'y
correct, over the range f::\o to k& = n. It is necessary to do this
becanse © gk b\ . n gk .
;Euﬁejm =5 Whl-le A«E‘ﬂmg mEL
Q. i .
The approximasién involved by this alteration of the l-m:ut of
the summafion sign is, however, of negligible proportions as
may easily be shown by an actual ealculation of the terms
) e
“Bhe’ Poisson limit has several advantages over the 1;1‘}19
b}ﬂo}nial probabilities provided the conditions laid down for its
use are justified. The incomplete B-function ratio tables are
actually tabulated for arguments of 0-01 of the 001.1313&1-11; prob-
ability p, but where p is less than 0-01 interpolation mtc.) the
tables becomes difficult indeed. The Poisson Limit is ex?enswely
tabled and the extraction of probabﬂities for p small is thus a
stmple procedure. In mathematical form it iz more tl‘fict&bh? 0
handle than the true hinomial probability, while for arithmetical



62  Probability Theory for Statistical Methods

purposes the fact that the mean and variance are equal means
that only one set of caleulations need be carried out.

Example. Compare the true binomial probabilities and those
obtained by assuming Poisson’s limit for n = 10 and p = 0-1.

P 0 1 2 | 8
7, (k, n—k+1)—I,{k+1, #—k) Binomial | 0-34868 | 0-44631 | 0-20501 | 0-05889
ek | ' Poisson | 0-36788 | 0-36788 | 0-18394 | 0-0613] |

k _ 4 b 6 N
'Ir(k,n—k+1)—1,,(k+1,n-k)3inomial 0-01130 | 0-00150 000014:0?00601
kel Poisson | 0-01533 | 0-00307 | 0-0005140-00007

k 8 9 |07 | Total
Ik, n~k+1}—I(E+1, n—k) Binomisl | 0-00000 o-ooooﬁ 0-00000 | 1-00000
mte k! Poisson | 0-00001 | 0-00800 | 0-00000 | 1-0N000

N

At first sight the agreement between\'t;h; two series does not
seem too good. This is partly because of the large number of
decimal places taken; for consideting that = is only equal to 10
the agreement when the first tWo' decimal places only are taken

. is as close as could be expecteéd.’ For p smaller than 0-1 the agree-
ment between the exact.calculated values and the Poisson limit
should be closer, as also*for the same p of 0-1 and larger . It
is well to note,¢ }'\éwiaver, that such divergences do occur.
Poisson’s limit should not be applied blindly and without due
regard for theeonditions of the theorem.

Evampld A caterpillar 2 inches long starts to cross at right
angles aote-way oycle-track T yards wide at s speed of f feet per
second.™ If cycles are passing this particular spot at random
mte;rvals but at an average rate of n per second, what is the

N Probability that the caterpillar reaches the other side safely? It

) gy be assumed that the impress of a cycle tyre on the ground
1s equal to £ inches and thag

the caterpiilar may only be touched
to be considered hurt, P vy

If the caterpillar is % inches long
on the road is ¢ inches then the best ¢
proba_.bility that & caterpillar will be

and the impress of the tyre

stimate we can make of the

run over by a single cycle i3
_ 24y

P=Ser
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If the speed of the caterpillar is f feet per second and the track
is 7' yards wide the caterpillar will take 37'/f seconds to cross the
track, Moreover, if cycles are passing with an average frequency
of n per second during these 37'ff seconds an average of 37n/f
oycles will pass the given spot. We require the chance that none
of these eycles do more than graze the caterpillar, that is we

I‘GqUH‘G 2 + 3\ 3T0f
12Tt
(-%7)

Generally the probability of one cycle running over the cater-),
pillar will be very small so that the Poisson limit will give ugthe -
approximate evaluation of this chance as '

2 43\ - ] (¢
— . Y {2 Bl
(1 SGT) eXP[ TETARUN &

It will be remembered that this answer is goreéct only if the
original estimate concerning the single cotistant probability is
correct. We have no means of judging from*the question whether
this is so. : o

Bxample. Over a generation of stirdents have been amused
by Bortkewitsch’s data, now clebsical, of deaths from kicks by
a horse in 10 Prussian ArmyGorps during 20 years. The material
he gave was as follows: ("

L

O
Actunal deatlis Fragquency If‘reql.l,am_)y .
per corps™ obaszved Poiszon’s limit
\ X }
o\ 109 169
»\’:.\1 . 85 il
N 2 22 20
a
. ':s\ i 1 : 1
A 5 —
Vo Total 200 200

The mean of the observed frequency is 0-61 from which we have
m=np=0861 p= 0-003.

Tke chance of heing killed by a kick from & horse in any one year
Inany one Army corps is therefore extremely small. The freque.ncy
using Poisson’s limit may be found directly from tal.Jles (MO]JI"[&)
entering with m. It may well have been that at the time at which
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Bortkewitsch wrote conditions were sufficiently stable to allow
him to consider that p could be constant over a period of 20 years.
This state of affairs is, however, hardly likely to obtain to-day
and it should be remembered in the grouping of such data that
the fundamental assumption is that there is a small but constant
probability that the event will happen in any one trial.
Ezxercise. The emission of a-particles from a radioactive
substance was measured by Rutherford and Geiger. If ¢ is the
humber qf particles observed in units of time of § minute, and
if'n, is the number of intervals in which ¢ particles were observed

then the experimental results may be expressed by theJollowing _
table:. \ o

7°%&
3

t{0| 1| 2| 314|566 7i8|9|10{14/3213|14] Total

/N

iy 5_7 203 | 383 | 525 | 532 | 408|273 | 139140 | 27 |[Jo}4 |—| 1 | t | 2612

o\
.Ca,leulate the probability that a singléxparticle will be observed
I & single time unit and fit Poldgon’s limit to the observed
frequencies if it is considered julstifiable.

Emmle. 4 man is standing some distance from blasting
operations in a quarry. Five small pieces of debris fall randomly
within a space of 10 sgwd. If the plan area of a man is 2 sq.ft.,
what is the probability that if he were standing within the

(llﬁbsg.);d. he ch{ki‘not have been hit by any of the pieces of
ehris? \

It is stated that the debris fall randomly within 10 sq.yd. This

implies thab of the 90 sq.ft. any one part is as likely to be hit as
any other, and that we ma;

- AR 2'8q. 1. receivin, . o Say.therefore tl:laj.; the probahility of
R ft, g a single pisce of debris is

\ P =5
ceived in 10 sq.yd. Hence the prob-
received by any particular 2 sq.ft. is
(L= o)peset, |

Conversely {; - )
1;>:iece,ils;&e ¥ the probability that he will be hit by at least one

I~ (1~ &)1 — o3,

O :
O™ Fn.re Pieces of debris are re
ability that none of these is

We have noted Previously that th .
e fundam
the binomisl th v undamental assumption of

eorem on probabilities and therefore of Poisson’s
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limi$ is that the probability is constant from trial to trial. This
does not mean that if an observed series of frequencies is found
to be graduated closely by a Poisson series the underlying
probability must necessarily be constant, although given full
information it might be a reasonable hypothesis to make. If
the probability of a single event varies considerably from trial
to trial so that the material collected is not homogeneous,
Poisson’s limit may be a good fit to the collected data, but it is
possible that a series known as the negative binomial may hé
more appropriate. It is easy to see how such a case might arige.
We have seen that for the binomial L

np = fif, "pq = fty A\
whence g = u,/p;. If 1, is greater than g then g is:greater than
unity and p = 1 —g¢ is negative. Since 4 is positive this implies
that # must be negative also and that a ser&ag of the form

@+(-p)" (O
would be the appropriate one to fit. X, gertain cases a negative
binomial may be expected from h}gp,ofhesis, ag in the theorygiven
by Yule for the proportion of gipedulation dying after the nth
exposure to a disease. Unlegs, “however, some such theoretical
- background can be constzucted for a problem the advantage of
fitting such a series may.be'questioned. The reader musé rememb.er
that p iz the proba i{fﬂ:yt that an event will oceur in a singlfa trial
and is o priori pestilated as lying between 0 and 1. » iz the
number of trial@and must be a positive integer. IFt would appear
wrong therefere to carry out caleulations in W}uc.h p and 7 are
given egai;ive values. Further, the object of ﬁttu:&g a series to
obt-airf‘hiy gradustions of observed frequency is tp enable
conghdsions to be drawn from such a fitting, and it is difficult to
O&Q@éﬁat conclusions could be drawn from the fitting of a negative
Nbinomial unless it is expected on theoretical groimd.s. '

It was first pointed out by ‘Student’ that series m whu_s}} the
variance is greater than the mean arise from the I'Jroba:bxhty P
10t remaining constant from trial to trial. These situations are
not uncommon in bacteriological work. ‘Student’ found that the
distribution of cells in & hasmacytometer did not follow a Poisson
series although it might reasonably be expected to do so. The

hypothesis put forward to ‘explain’ this was that the presence
3

DFPT
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of one cell in a square of the haemacytometer altered the prob-
ability that there would be another, owing to the first exerting
some attraction on the second, and so on. Karl Pearson writes,
‘if two or more Poisson series be combined term by term from
the first, then the compound will always* be a negative binomial’
and remarks that this theorem was suggested to him by ‘Student’,
It is, however, not altogether certain that the converse of the
theorem will hold good. )

Pearson actually considoered only the case of graduating the'
negative binomial by two separate Poisson series, which mway
account for the fact that this method is not always satisfactory
in practice. His object was to obtain some means. wherehy a
satisfactory intérpretation could be given to the “e‘bsem rational
data. Actually, of course, unless there is an amjmom reason to
expect such a dichotomy, the splitting of\th® data into two
Poisson series may not help very muck. N

R

S 3
NN

PEARSON'S THEOREM #0F% THE GRADUATION
OF THE NEGATIVE BINOMIAL

A series of N observations; for each of which the fundamental
probability » may var)(z may be described by the two Poisson

series k mk e
T EREe)ee)]

whesre m, a:n\d .m2 are the roots of the equation
\:"\."’mz(ag—ai) — M~y ay) + a3, —ak = 0,

and a}aﬁ, @5 are obtained from the moments of the series of
N\observa,tlons by means of the rolationships

\‘ @y = gy, @y = py— iy, aa=ﬂ3‘3ﬂé+2ﬂi

r ’
and Ya_Mim™y U p—my
E] - T .
N omy—my N my— m,

The proof of the theorem is straightforward and may be left to
the student as an exercise.

* This is not strictly true,
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Example of use of the theorem. ‘Student’ gave the count of
yeast cells in 400 squares of a haemacytometer in the following
table: : '

* [ Number of yonst colls | 0 1 2 | 38 | 4] 5 | Total
Frequoncy 213 | 128 37. 18 | 3 | 1| 400
Here o) = 06825, g, =0-8117, p, = 1-0876,
giving g=119, p=-019, n=-359,
so that the negative binomial would be O\
400119 — 0-19)-2%9, O

R

Solving the equations given in the theorem, we obta,iJ;tf ™)
v, = 237, my = 0-385, ,w}\\
v, = 163, my = L116,

whence by calculating out these two Pojg;{éh\séﬁes a good fit is
obtained. PN '

No. of yeast cells 0 1 PANIE: 4] & 4 7

lst Poisson scries | 161-44 62-11,0B95 1:53 015 0-01 000 0-00
Ind Poisson sorics | 6332 59-52.32:22 1236 345) 077 014 002

Total 215 {l22 4 14 . 4 1
QQ\ 128 37 18 3|1

| Observed frequency

Many other nega{t‘ii\fé binomials may be graduated in this way by
the addition of #wo Poisson series. However, as wo l}ave no’te(li,
the dichotonty is not always satisfactory and possibly this is
becaus@‘\liﬁ’e than two Poisson series may be required adequately
to degeribe the observations. . .
“N;@yfnan has discussed what he terms a new class of ‘con-
“agious distributions’ which, it seems, will be applicable to aany
types of heterogeneous data and which will moreover give at
least a8 good a fit and probably a better fit than many of the
existing series. The moments of the distribu.tlon may be
derived by the reader at a later stage since they will follow 1{105}13
Neturally from the application of the theory of chfa,racte.nstm
fonetions. However, the practical use of the theorem is pertinent

at this point and we shall therefore state it without proof.
. 52
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NEYMAN’S THEOREM DESCRIBING DATA
IN WHICH iy > fi

A series of N observations, for each of which the fundamental
_probability, p, may vary, may be described by the series

PIX k1) =T S TR kg
where P{X = 0} = exp(—my(1—e—m)) X
X being the number of “successes™, 0, 1, 2, ..., ‘\ N
and My = (=i, g = pifme. N

ft2 and g} are caleulated from the observationsg.;f;qyfl and m, are
essentially positive, ’

There appears to be no reason why this seties should not fit
adequately all binomial type series for slich p, is greater than
ft1. Since the positive binomial will probably be sufficient when
#2 18 less than g, and the simple RoiSson for s, approximately
equal to 41, it will be seen that Néyman’s series extends the range
of theoretical distributions necessary for describing frequency
distributions for which g i,

We must remark, haowever, as for the negative binomial, that
the fitting of the Kfes’wj]l enly be of practical use provided
the estimated parai%ters are capable of physical interpretation.

Example. Gg-\tﬁénwood and Yule give a table of frequency of
accidents in B)weeks to 647 women working on H.E. shells.
A simple-Roisson distribution fitted to these figures does not
gradq@ﬁhe observed frequencies very well, the reason being, it
is supposed, that accident proneness is different for different

N
a\" T .
./ | Number of | Observed Poiszon Nogative Neyman’s
accidents : froqueney | distribution | Dinomial series
distribution

0 447 404 442 448
1 132 189 140 12y
2 43 45 45 49
3 21 7 14 16
4 3 L 5 5
i) 2 01 2 1

Total 847 648 648 847
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women. Greenwood and Yuls fit a type of negative binomial to
the material and obtain a good fit. The writer has fitted Neyman’s
series to the same material and it will be seen that this series gives
a slightly better fit than the negative binomial. It is, however,
difficult to see what the parameters of either distribution mean.
The only drawback to the use of Neyman’s series would appear
to be the relatively heavy computation which is involved if the
of the series is over 10 (say). However, this is a slight failing,
because it is rare that series of this type are found with k very,
large and in any casge it should not be difficult to devige a suitable
computational scheme. ‘O
Ezercise. The number of defective teeth in alien J&wish
children (boys) aged 12 years is given in the table below

t=Ko. of teethatfected | 0 | 1| 2|3 | 4|5 |6 |7|85|gdbiT1]12|Total
| e=No. of boys with 1| 7356 |37 |52 |31 | 18{22 6 | \8| 2 | 2| 2 | 313
teeth affectad N

P

Fit {a) Poisson’s series, (b) the negativt;tbixnomial geries, (¢) Ney-
man’s contagions series to this lq;g,ﬁerial. Can you suggest any
reason why the variance is larger than might have been expected ?

SN g
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CHAPTER VII

PROBABILITIES 4 POSTERIORI
CONFIDENCE LIMITS

In the first chapter we defined the population probability of
a characteristic as being the proportion of units possessing that
characteristic within the population. It is clear therefore that
if the population probability is known then it is possible\td
specify all the various compositions which a sample drawh from
that population may have and the probability that eaghof these
compositions will arise in the random drawing of a sifigle sample.
For example, when considering a pack of 52 ¢a¥ds, if the prob-
ability of drawing any one card is 1/52 and five'ehrds are drawn
randomly from the pack, all variations of he 5 cards can be
enumerated and the probability of dra,wiﬁg any one particular
set may be calculated. Thus from a knb}viedge of the population
wo are able to specify the probabilityof the sample and the most
probable composition of the sample. Such probabilities are often
teferred to as probabilities a~@ftors in that prior knowledge of
the population probability@¥necessary for their evaluation,
We now turn to what@re termed probabilities ¢ posteriori and
we find that the positibnis the reverse of the o priori probabilities.
Now all that is kndwn is the composition of the sample and it is
required from J3ld¢ knowledge to estimate the most probable
composition Gf'the population from which it has been drawn.

Obviousb\‘if‘i-epea,ted sampling could be carried out then the -

compqsiﬁi})n of the parent population, i.e. the proportion of
- indivielials possessing the characteristic 4, can be estimated very
uenarly. However, it is not always possible for this repeated
sarapling to be carried out and we shall therefore discuss methods
of estimating a population probability which have been put
forward in the past (and mostly rejected), and the present-day
method of confidence intervals,

For many years the centre of statistical controversy was
centred around the theorem on probahbilities a posteriori, loosely
spoken of as Bayes’ theorem. Thomas Bayes himself may have

Q!
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had doubts about the validity of the application of his theorem.
At any rate he withheld its publication and it was only after his
death that it was found among his papers and communicated to
the Royal Society by his friend Richard Price in 1763, Laplace
incorporated it in his Théorie Analytigue des Probabilités and
used the theorem in a way which we cannot at this present time
consider justifiable. However, since the theorem was given the
weight of Laplace’s authority, the validity of its application was )
assumed by many writers of the nineteenth century; we find
famous statisticians such as Karl Pearson and Edgeworth de:
fending it, and it still holds & prominent place in such elemeﬁta,ry
algebra text-hooks as have chapters on probability. Yet the
modern point of view is that, strictly speaking, tho ﬁpphcatlon
of the theorem in statistical method is wholly f&llacious oxoept
under very restricted conditions,
Bayms’ THEOREI\K >

An event & may happen only if one of'the set B, B, ..., K, of
mutually exclusive and only possible events occurs. The prob-
ability of the event &, given that \# has ocourred, is given by

P51y~ BRI P(E i_fﬁ}_
A\ E P{B; P{E| B,

P{E,| E}1s spoken of a}\he a postemom probability of the event F,.
Proof of Thporam, The proof of the theorem is simple.

B ~ P(B) P{5,| B} ~ P{E} PE| B},
whence \"\ P{F,| E} = P{E} P(E| E)jP{E).
Itis st&téa‘ that & may only occur if one of the set By, 7, ..., H,
OCoUR; vand since these mutually exclusive events are s,lso the

¥ possﬂole ones,

P{E} = P{E.E}+ P{E.E}+...+ P{E_.E,}.
Each of the probabilities on the right-hand side may be expanded
as before, for example,

P{H.B} = P{E} P{E| I}

and the proof of the theorem follows.

In the statement of the theorem we have written of a set
B\, B,, ..., B, of mutually exclusive and only possible events. It
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is, however, possible to speak of them as & set of hypotheses,
and for this reason Bayes’ theorem is sometimes referred to as
a formula for the probability of hypotheses and sometimes as
a theorem on the probability of causes. _ '

However, no matter what the title of the theorem, it is clear
that unless P{ ]}, i.e. the prior probability of the event X,, is
known, the application of the formula cannct he valid. Thus, if
we regard the event E, as the hypothesia that the sample & ,
has been drawn from ome of a given set of populations, it ig
clear that the probability of this hypothesis will rarely be knostmy
If the composition of the super population generating the(et of
populations is known, or, in the language of the theorem, if
the prior probability of the event ¥, is known, then £he validity
of the application of the theorem is not in questio:ri:?bﬁt we must
then consider what occasion would arise in stdtistical practice
in which it is necessary to calculate a furt};ei\ijrob&bﬂity.

If P{E}is not known, it follows that someassumption regarding

its value must be made before P{H,| B¥cah be calculated. There
is no reason why this assumption gheuld not be made, but the
fact which is often overlooked is that, given such an assumption,
P{E,| B} will only be correct unger this assumption and will vary
according to the nature of th\assumption. It has been customary
to assume that all compoRitions of the populations E,, B,, ..., B,
are equally probable, &nd from this to draw inferences regarding
the most probable €omposition of the population from which the
sample has beerbdtawn. It is legitimate to malke this assumption,
but if it is made'then it should be stated that under the assump-
tion thatall population compositions (all hypotheses, all causes)
are equally likely, the probability that E is associated with B,
is a_certain value,
( Fossibly it is unnecessary to labour this point further for at
the present time there are few adherents of Bayes’ theorem. We
ghall consider some examples for which the application of Bayes’
theorem iy valid, and some for which we shall show that the
probability will vary according to the original hypothesis
regarding the populations.

Ezample. Assume that there are three urns each containing
a certain number of balls. The first nrn containg 1 white, 2 red
and 3 black balls; the second 2 white, 3 red and 1 black; and the
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third 3 white, 1 red and 2 black. The balls are indistingnishable
one from another, except for colour, and it may be assumed that
the probability of drawing one given ball from any urn is 1/6.
An urn is chosen at random and from it two balls are chosen at
random. These two balls are one red and one white. What is the
probability that they came from the second urn?

If the urn is selected at random then all three urns are equally
probable and we have

P(F} = PUm1} =3, P{E}=P{Um2}=},

P{E} = P{Um3} = 3. O\
The event J consists of the drawing of two balls, 1 white @ﬁdﬁ red,
from either E, or B, or K,. N

number of ways in which 2 balls dra,yyip"
from %, can be L'white and 1 red

P By = total number of ways in which 2 balls.
¢ Ggn be drawn from &,
, 21412 O
=25 T O
Similarty 1 N\ o4 .
2141 2,39 I4]
PE|B} =6~ =g DiEIE}I=3 5 =5

By Bayes’ theorem m<" PiE) P(E 5
P{Q{E} = _‘Sit.___f_

X P(B) PIF| B}

and wé haven</

PN E) =4 PB| B} =% PU| B =+
Itis a\'l%ﬂé uneertain how such probabilities may be interpreted.
Eﬁample. A bhox contains a very large number of identical
lg&ﬁs one-half of which are coloured white and the rest black.
\JFrom this population ten balls are chosen randomly and put in
another box and the result of drawing 5 balls randomly with
replacement from these ten is that 4 showed black and 1 white.
What is the most probable composition of the ten balls?
- The probability that there ate & white balls in the ten is, from
the description ‘very large’ population,
10! 1

F10—%)1 20~ PiEy.
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If there are & white balls in the population then the probability
that 5 baills drawn from the ten with replacement will show 4
black and 1 white will be

81 (kAR Eye
P{D|Efc} 411[ (10) (1_FJ) '

Applying Bayes’ theorem and reducing, we have

P{B,| ) | .
10! 10! k)‘(L_ r’i)“
T k10— k)] (10) ( 19/ [ 2 F10=7%)1 \10 10}
Letting % take in turn values 1, 2, 3, ..., 7, 8, 9 (we excludé 2070

hecause it is known that one white ba]l is among the‘ten and
10 because at least one black ball is known to beQRresent) we
may draw up the following table:

[ % ‘123456{1\7]8 9‘

P{F,G]E}'OOJ 011 | 024 | 030 | 0225 o\og 002 | 000 | 0-00 |

The most probable composition of the ten balls is therefore four
white and six black. N

Coolidge gives an intereghing illustration of the effect of two
different hypotheses in }gréblems of this type where the composi-
tion of the original pqpulatmn 13 not known. He propounds the
following problemg*

‘An umn coutams N identical balls, black and white, in
unknown proR(}rtmn A ball is drawn out and replaced » times,
the ba‘]‘l(x‘ing mixed after each drawing, with the result that

" just r balls are seen. What is the probability that the urn
contams exa,ctly R white halls?’ As in the previous problem

O ppima. L (By( Ry

| B} = rin—r)1\ ¥ =%
but now the probabilities of the compositions of the population
are not known. We cannot therefore apply Bayes’ theorem unless
we make some hypothesis about these probabilities. Coolidge
suggests

Hypothesis I. All compositions of the population are equally
likely.
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Hypothesis 1I. The population has been formed by drawing
balls at random from a super-population in which black and
white are of equal proportions.

The student may invent other hypotheses for himself.

For kypothesis I we are given :

P{fig} = YN -1,

for we rule out the cases that all are white and that all are black.
We have therefore -

w1 (05 E04T o

and the most probable composition of the popu]a,tiqﬁ,:\given
hypothesis 1, is R 3

.
£G4
N
o7 -

¥ O

In other words, the proportion observed in the sa,rﬁple 1s the most
probable proportion in the population. \\
For hypothests II we are given v
N\ My

P{E np =
which gives

P{B,| B} =

Nt (RyOR n-r/NE—I ¥ (g)f (l_g)n—r

RN -R)! (ﬁ _‘ﬁ) ~ R(N-R)!\NV w

whence by ﬁqdu"lg the value of R/N which maximizes this

expression 'Q'e‘ deduce that the most probable composition of

the N @S‘from which the » balls were drawn with replacement,

s Q'.j'\ E 1 N+2r

NT% N+n |

\Thus by making two different assumptions regarding the oo~
position of the probabilities of the compositions of the popu]atfon
we are led to two different conclusions. Ifwe take the pc‘)pullatlon
as N — 10, the sample as » = 5 and the number of white in the
sample as # = 1 we shall have for the most probable GO].‘ﬂpOSlthl"l

of the population 4

.. R 2 w R_4
Hypothests 1 ¥ = 10" Hypothesis 11 =100
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Both these results are correct if the original hypotheses are
aeccepbed but neither is correct if we limit ourselves strictly to
the conditions of the problem which states that the composition
of the population is not known.

This example illugtrates clearly the fallaciousness of Bayesd’
theorem as it is generally applied. We shall take the point of view

* that in general Bayes’ theorem will not be applicable in statistical

work., An exception $0 this, which will be discussed in a later
chapter, is the application to Mendelian hypotheses, O

The statistical problem associated with Bayes’ theorem,is'one
which touches statisticians very nearly. Much of the'\werking
career of a present-day mathematical statistician, I¥”spent in
attempting to draw valid inferences about a popalation when the
only information available to him is that obfdinable from &
sample {or samples) drawn from that popolation. This need to
draw inferences about the whole frou\\i;he part has possibly
always been felt by workers in ppiibabi]ity, though not so
markedly as to-day, and this may\be’the reason why the nse of
Bayes' theorem persisted for,go' ‘Mmany years; its inadequacy
must have been recognized mény times but it was used because
no one could think of anything better.

The objective of theanethod of confidence intervals, & statis-
tical concept which was devised to overcome the impasse created
by the too libe Khs’e of Bayes’ theorem, is the estimation of
limits within Whith we may be reasonably sure that s given
population Ra,i'ameter will lie; these imits are estimated from the
informatiéryprovided by the sample. For example, since we have
discusg "d}ahe binomial theorem in some detail let us suppose that
it i\sliesired to estimate p, the proportion of individuals posses-
siigha certain character in a given population, the only informa-

{$ion at our disposal being the number J who possess that character
) in a sample of size » which has been randomly and independently

drawn from the population. We should, possibly, for lack of
anything better, take the proportion in the sample ag an estimate

~ of the population probability, but it is unnecessary to point out

that this estimate will vary both according to the size of the
sasmple and the number of samples available, '

If p, the population probability, is known, then by the binomial
theorem the probabilities of obtaining 0, 1, 2, ..., n units
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possessing the given characteristic in a sample of size » can be
enumerated. If any positive fraction eis arbitrarily chosen, where
0<e¢< 1, two points fi/n and fy/n can be found such that

Plx<fifn}<le and Pl <fyinj<ie,
whence P{fin<a<foniz1—¢

for given values of p and . If P{x|p} had been a continuous
fonetion then it would have been possible to ¢hoose f; and f; so
that each of the above probabilities was exactly equal to ie!
Since, however, for the binomial probabilities P{w|p} is dis;
continuous, it becomes necessary to choose f as the neatest
integer satisfying the inequality. ' ~\ N

If n is kept constant but different values arejtaken for
2,0 < p< 1, it will be possible to find f, and f, to sabisfy the above
inegualities for each value of p chosen. It will”thercfore be
possible, for one given value of n and one gingxtvhlue ol s, to draw

a diagram something like this: o\

10 &5
B,
Br
[=]
I
3

S 0
\ Beale of @ = fin

€ is usﬂd%"&rbitrarﬂy chosen to be equal to 0-05 or 0-01 and it
foﬂQﬁEﬁ‘from.the construction of the diagram that knowing p,
thé\population probsbility, and n, the size of the sample, we may
“Fedd off the two fractions fu/m and fofn and be confident that only
once in twenty times (¢ = 0-05) or once in one hundred times.

(e = 0-01) would we expect the probability as estimated from the

sample to fall by chance cutside these limits. The curves will be

different for different values of » and € but they will all follow the -

same kind of pattern.
Diagrams somewhat gimilar to these were first drawn by

E. 8. Pearson and C. J. Clopper. Their curves are reproduced
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The numbers on the curves indicate the sample size.

EReproduced by courtesy of the Editor of Biometrika,
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here by permission of the Editor of Biometrike. Although
strictly they should have been drawn as a series of steps, as in
the illustration above, the authors smoothed them by joining
the outer points of the steps by a smooth curve.

Before we pass on to consider the estimation of an interval
for an unknown population parameter from fhese curves, we
may perhaps mention one use of the curves which is sometimes
overlooked. Suppose it is desired to test the hypothesis that
a sample, in which the observed proportion of units possessing
a given character is f/n, had come from s population in which,
the proportion was p. This type of problem may arise in the. %
testing of Mendelian hypotheses when it is possible to calgilate
@ priori what the proportion in the population should be:

Ezample. From the mating of two individuals of genetical
compositions AA and Aa the offspring must fave the only
possible genetical compositions AA and Aa by\the Mendelian
hypothesis. Among the 20 offspring from é¢veral matings of
this type 14 were cbserved to be AA andB(Aa. Is this consistent
with the Mendelian hypothesis? By the/Mendelian hypothesis
{see next chapter), N .

P{AA} = }'= P{Aa}.

The observed proportion of. AA in a sample of 20 was 14/20 = 0-7.
Reference to the conﬁdem}é%elt for n = 20, ¢ = 0-05 at the point
P = %, shows that onpeﬁ\n twenty times, owing to random errors,
the sample proportio will lie outside the limits 0-25 and 0-75.
In our case the Observed proportion lies within these limits and
wWe may say, .t:h&t" there is nothing in the data to contradict the
Mende]janihypothesis.

The pfp}}cedure carried through in the example does not differ
fromthat which we have previously discussed in other examples
oh the binomial theorem, exceph that in this case the limits are
already calculated. If the sample proportion had happened to
. fall outside the sample limits as given by the chart, then the
argument would be that only once in twenty times would this
be expected to happen through chance, that twenty to one are
rather long odds and that the original Mendelian hypothesis may
not be tenable. At least the statistician would be justified in
asking for a check of the original assumptions.

In using the 0-05 or 0:01 level for the acceptance or rejection

Q

[}
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of hypotheses it must be remembered that on an average of once
in twenty times (or once in one hundred times) the hypothesis
tested will be correct but that the arbitrarily chosen himits will
reject it as untenable. Obviously it will not: be possible for the
statistician to predict when such an occasion will arise and it will
be necessary for him therefore to balance the sensitivity of the
limits against the risk of making a false decision. In alifetime of
statistical work he will run the risk of averaging one in twenty
wrong decisions if he always chooses the 0-05 level as his eriterion™

This use of the confidence curves for the testing of hypotheses
is not all-important, however, becanse the population probgﬁfjiﬁ‘ty
is rarely known; in fact where Bayes’ theorem is not ‘directly
applicable for purposes of estimation then no diregh hyipothesis
can be tested. The use to which the confidence clirves are most
often putis to estimate an interval which will inglade the unknown
population parameter 95 {or 99) times in 100, The confidence
belts were constructed by considering alli¥alues of p between
0 and 1 and all possible values of 2 f&=f/n) for each value of p.
Consider a function ¢(p) which will have the property that the
value of ¢{p) at the point p =i will be the probability that
2 = a, This function ¢(p} W‘eiiiné,y call the a priori elementary
probability law of p and se fote that it is unknown.

"The probability that@any given point (z, p) will lie within the
confidence belt, for.4 sample of size n, is
P{(z,p)|n} = PrObability that (»,7) lies within the confidence

: \\Chelt for »

e ’\'"'2 W‘fs."ﬂP
\'X” . Allpsb(})) x)thrﬂ {m |p}-
me,g to the way in which the confidence belts were constructed
~~}'lé‘ ghall have
Plx,p)|n}z T ¢(p)(1—e)=1~¢.
Allp

Hence the probability that any pair of values (z,p) will lie
within the eonfidence belt is greater than or equal to 1 —¢, € being
the small positive fraction at choice. It follows that if we make
the statement that the pair of values (%, p) will always lie within
the confidence belt we shall be wrong in making this statement
on a proportion € of occasions,
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Suppose now that we have an observed proportion x = I
and it ig desired to estimate confidence limits for the unknown
population probability, p. This may be done direetly from the
confidence belt. The abscissa is # and if an ordinate is drawn
through » cutting the confidence belt at p, and p,, then

' Plpy<psplzl-e .

and p; and p, are called the confidence limits for p. Because p
i8 a population parameter it cannot vary, but the limits p, and p,
dependent as they are on # and f, will vary from sample to sample;
but however p, and p, may vary, in stating that the interwal
P, to p, will cover the true population value we shall be fight in
making this statement on a proportion (1 —e) of occagions. The
value ¢ is at choice and is usually taken as 0-05,0f0-01. The
statistician must balance the smaller interval - fér'p if e is large
against the increased chance that the inﬁerva,\l will not cover the
true value. A

S

We may note that because of the method of construction of
the confidence belt the a priors distribithion of p does not matter.
Thus we have taken a step away ffomi the restrictions of Bayes’
theorem. A\

™\
3

REFERE@E}ES AND READING

Bayos’ thecrem is diséissed by most writers on probability and the
objections raised here are generslly brought forward. For those who
would like to read. n Hofence of the theorem there is H. Jeffreys, The
Theory of Probability, but it should be added that few_statiaticiams a;cc:?pt
Jeffroys’ arguments. J. L. Coolidge, An Introduction to Mathematical
Probability hew’a stimulating diseussion of Bayes® theorem as has also
J. V. Uspenieky, Introduction to Mathematical Probability. R. A. Fisher,
‘Unecertain’ Inference’, Proc. American Acodemy of Arts and Sciences,
LXXI;n0. 4, gives interesting criticisms of Bayes’ theorem and develops
hisz.Wn theory of fidueial inference published some years previously.

N\ have not touched on Fisher’s thecry in thiz chapter. We may note

that he develops a theory which differs to a certain extent from that of
Neymsn and that both theories have their protagonists. Neyman first
put forward (in English) his theory of confidence intervals in J. Neym&f,n,
‘On two different aspects of the representative method’, J. R. Statist.
Soe. 1984, and extended it later in ‘Qutline of a theory of statistical
estimation based on the classicel theory of probability’, Phil. Trans, A,
CCXXXVI, p. 333.

It is for the student to read both Fisher and Neyman and to make
up his own mind which theory he prefers to adopt.

DeT 6



N

CHAPTER VIII
SIMPLE GENETICAL APPLICATIONS

It is perhaps surprising that the field of genetics has not made
a more universal appeal $o writers on probability. The hypotheses
governing the simpler aspects of inheritance appear to be clear;
cut and it is intellectually more satisfying to apply the fundag
mentals of probability to a subject which is of pr&eticah,\im-
portance rather than to follow the orthodox proceddre” and
discuss the hazards of the gaming tables. There:‘a;re many
text-hooks on genetics in which probability a,pp]i\cei{tions are set
out, and this present. chapter does not pretend $0 instruct the
serious student of genetics; what is &ttemgt{ed is to give the
student of probability a small idea ofhoWw the elementary
theorems of probability may be of usey )

The simple Mendelian laws of inheritance postulate the
hypothesis that there are ‘atomgXef heredity known as genes,
These genes are associated n.pairs and an offspring from the
mating of two individuals redgives one gene from the pair from
each parent. Thus if we mTite AA for a pair of dominant genes,
and aa for a pair of 6dessive genes, the genetical composition
of the offspring of‘the\m&ting of AA x aa can only be Aa. Such
& genetical compogition will be spoken of as a hybrid. From such
simple assumyplions it is possible to specify the probabilities of
any type Qf‘ge”netical composition arising in the offspring of any
given m\s{bmg Tfwe write X, and X, for the genetical composition
of the'parents and Y for that of their offspring, we shall have,
cpn‘gidering one pair of genes only, the following alternatives.
(1) X;=AA X, = AA P{Y =AA|X, = AA X, = AA} =1,

P{Y =Aa |X; = AA X, = AA} =0,
P{Y =aa [X, = AA, X, = AA} = 0.

(i) X;=Aa, Xy= AA. P{Y = AA|X, = Aa, X, = AA} = }

R

P(Y = Aa |X, = Aa, X, ~ AA} =}

a3

P(Y =aa | X, = Aa, X, = AA} = 0.
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Similarly for Xl = AA and X, = Aa.
(i) X, = aa, X, = AA. P{Y = AA|X, = aa, X, = AA} = 0,
Pl{Y = Aa | X, = aa, X, = AA} = |,
P{Y = aa | X, =aa, X; = AA} = 0.

Similarly for X; = AA and X, = aa.
(iv) Xy = Aa, X, = Aa. P{Y = AA|X, = Aa, X, = Aa} =1,
P{Y =Aa |X, = Aa, X, = Aa} = },
P{Y=aa |X; = Aa, X, ~= Aa} = 1.

AW,

(v) X, = aa, X, = Aa, P{Y: AA|X1_= aa, X?.= Aa} ;\0, .
P{Y—aa |X1—aa X uAa}_E

Similarly for X, = Aa and X, = aa,
(vi) X; = aa, X, =aa. P{Y = AA|X, =aa X, = aa} =0,
P{Y = Aa | Xy~ a2, X, = 2a} = 0,
P{Y = aa [XIz aa, X, = aa} = 1.

These resutts follow directly from® the apphcatlon of elementary
probability theorems, The probiabilities thus obtained are some-
times spoken of as the Mendelian ratios.
The study of the inhg‘itbnce of a particular pair of genes in
a population is often rendered difficult by the fact that there is
a selective factor iflymating of which it is necessary to take
account. Karl Pearson diseussed this ‘ coofficient of assortative
mating’ for himhan populations and there is no doubt that it
obtains for fpany animal populations also. In fact, it is difficult
to think, GMy population in which it is reasonably certain that
the m@tmg ig at random and is not affected by the genetical
{ﬁ‘iposﬂtlon of the parents. The process of random mating is
styled Panmizie, and we shall discuss a simplified form of this
Process. It may be guestioned, since random mating is rarely
met with in practice, whether it is worth while diseussing. From
the point of view of applying the theory of probability to genetical
material it possibly is not, but from the point of view of under-
standing the application of probability theory to genetical
theory the study of Panmirie will not be without value.
62
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Assume that in a given population the proportions of males
who are dominants {AA), hybrids (Aa) and recessives (aa) are
Py, ¢, and 7y, where p, +¢, +r; = 1, and that the corresponding
proportions for females are py, g, and 7y, wWhere py+¢;+7y = 1.
If it is further assumed that Panmizia operates, we may proceed
to caleulate the proportions of dominants, hybrids and recessives
in the first, second and third filial generations. As before, write
X, and X, to represent the genetical composition of the parents
and ¥ for the genetical composition of their offspring. It folows\
then that the proportion of dominants in the first filial genelja»t\ion
is given by 2% -

P{Y = AA} = P((X, = AA) (X, = AA) (¥ = AAY}
+ PU(X, = AAY (X, = Aa}(Y %.AA)}
+P{(X, = AA) (X, = aa){F = AA)}
1+ P{(X, = Aa) (X, = ARN(Y = AA)}
+ P{(X, = Aa) (X, =/AN) (Y = AA)}
+ P{(X, = Aa)(Zg>aa) (¥ = AA)}
+P{X, = aa) (Xp= AA)(Y = AA)}
+ P{(X, = ad]{X, = Aa)(Y = AA})}
+P{(X; =88} (X, = aa) (Y = AA)}.
TEach of these probabilities IE[a:}; be evaluated from first principles.
For example Q
)
P{(X, = AA) (E)= AA) (Y = AA))
= P{(Z: = AA)} P{(X, = AA)| (X, = AA)}
N x P{Y = AA)| (X, = AA) (X, = AA)},
or, smce:r@dom mating was assumed,
.f%‘Xl = AA) (X, = AA)(Y = AA )}

A = P{(X; = AA)} P{(X, = AA)}

O x P{(Y = AA)| (X, = AA}(X, = AA)},
whence, on substitution, we have ,
P{X, = AA) (X, = AAY(Y = AA)} = py ps.

If P} be the total probability that ¥ is a dominant, then, by
. similar caleulations for each individual term and substitution in
the formula, it is found that

PY=AA} =P = (P1+3%1) (02 + 34,).
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Similarly it may be shown that

P{Y = Aa} = Q) = (py+301) (r2+ §90) + (Do + 3a0) (1 + 3)
and P{Y = aa} = B, = (ry+ 39y (ry + 3g0)-
It is easy to verify that P+ Q,+R, = 1, The proportions of
dominants, hybrids and recessives in the first filial generation
are therefore B, @,, R,.

We now assume that random mating again occurs, and
calculate the proportions of dominants, hybrids and recessives,
in the second filial generation Z. By & process identical with that
for the first filial generation it may be shown that . -\

\

By = P{Z = AA} = (P+5Q07 N

Qs = P{Z = Aa} = 2P, +1Q) (Rl+%QQ,Z”

Ry, = P{Z = a3} = (B,+1})"
Again if W is the third fial generation t};eQ\ )

By = P{IV = AA} = (B+3908= (B+10.%

Qs = P{W = Aa} =2(B+-3Qy) (R, +1Qy)

= AP 10 (B, +30)),

Ry ="P{W = aa} 2(B,+10y7 = (R, +}Q,)%,
remembering that P+ “Q*:{— R, = 1, I follows, then, that pro-
vided the mating is always at random and no extranecus factors

_ intervene, the gen@t}s\al compositions of the population do not

change in propertdon after the first filial generation. The
population affer”’the first filial generation may be regarded
therefore g,s;gﬁéble genetically. -

Example’ A breeder wishes to producs seeds of red flowering
plantg\(AA or Aa}. For this purpose he repeatedly performs s
mags, Belection, consisting in the early removal from his fields
‘(if all plants with white flowers {aa) before they open. Thus he
removes the possibility of any plants being fertilized by the pollen
of pure recessives. Assume that the process of reproduction of
plants left untouched in the field satisfies the definition of
Panmizia and that in a particular year the percentage of plants
removed because they would have flowered white was r = 4/25,
Caleulate the proportion of white flowers to be expected from the
seeds of the plants left growing on the field.
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Since repeated selection has been performed it may be assumod,
if p, ¢ and r are the proportions of dominants, hybrids and
recessives respectively, that

P=@+30 ¢=2p+i0)(r+39), r=(r+4gp
which give, on solution of the equnations,
P=(1=yrP, g=2r(l—yr), r=r,

. . Q"
for the proportion of dominants, hybrids and recessives in a stablé
population. The recessives are artificially removed, i.e. 7, &0,

and the proportions accordingly become O
1-Jr 2r N
L. o JONT L 0. N
P L4’ g 1+’ ! K¢

If this population now mates aecording to Pgmﬁz’m’a, the pro-
portion of recessives, r,, in the nexs generation from s population
so composed will be ~N\
. ! ! 2 $f~
R R g

RO

r was given equal to 4/25, and therefore the proportion of white
flowers {recessives), given by sn]gisfituting in the expression for r,,
iy r; = 4/49, that is, the Preportion of white flowers hag been
almost halved by a single selective process.

The procedure set out.in this example of artificially destroying
a certain proportigh, of the population raises some interesting
queries as to what will happen if the selection is carried out
a number of piznes, and what the number of repetitions will need
to be if %é\i)roportion of recessives iy to fall below 3 given
number"The whole Problem of random mating and artificial
selection can be represented geometrically,

~We have seen that in a genetically stable population

p={-yrp g= 24yr(l—yfr), r=r,
from which NP+ =1,
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Consider a point 4 with co-ordinates (p,, r,). If pyandr, represent
the proportion of dominants and recessives in s population, then
for Panmixia, as already proved, the proportions p, and ry of
dominants and recessives in the first filial gencration will be
P1= (Do +190)* = 11+ (py—1))3,
7y = (ro+340)? = H{1—(py—7y))2

r

©, 1)

vi+r=1

o b
{Not igc{.’s'c;’ije)
If p, and », are consta,nt;ftﬁén the point with co-ordinates
{(p1,7y) will be given by, the"intersection with the parabola of
the perpendicular to k&ﬁfﬁhe
O p+r=1

- through 4. If (py %y} is a point on the parabola then (py, ;) is the
same point, Hewde, if the mating in a population is supposed to
be accordingth Panmizia the composition of the next generation
may ea‘?il)'r\he found by geometrical drawing. '

We.may now suppose that we have a population the composi-
ti@;‘éf which is genetically stable, and the co-ordinates of which
on the parabola are (p, ). If all the recessives in this population
are destroyed the proportion of dominants will be p/(1 — 7) and the
composition of the population will be represented by a point Ay
with co-ordinates (p{(1 —7),0). It will be noted that the point 4,
is also the point of intersection with the abscissa of the line
joining the points (0, 1) and 4, (p, 7). :

If the population represented by 4. is allowed to mate
randomly, then, following the previous analysis, the composition
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of the next generation will be given by the co-ordinates of the

point of intersection with the parabola of a line at right angles to
ptr=1

and passing through A;, The cc-ordinates of this point 4, are

(@) (o] .

The effect of applying selection to the population represented by
4,, and then allowing it to mate randomly, can be sgeg’rtd\)y

N

TA “("«'«,

_ .“:\V
©, 1) 4 /

A, (.0 I
\ \\ {Not to seale}
following the gaﬁﬁé i:rocﬁss; 4, is joined to {0, 1) and the point of
intersection 9f this line with the abscissa is 4}. The line through
A7 at ri%’ﬁ\angles to the line joining (1,0) and (0, 1) gives the
compogition of the next generation in its point of intersection

mtkkthe parabola. SBuppose this process is carried out » times.
{’sts easily shown that the co-ordinates of 4, and 4, are

A [(tendy (o
nro Ltnjr A\l fr) |
b [l4(n—1)fr
ol kes ALl |
The proportion of hybrids may always be found from the relation
Prgtr=1,
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If the selection process is carried out » times, then it is seen from
4, that the proportion of recessives in the nth filial generation will
be

7

Example. If the proportion of recesgives was 4/25 in the
original population, how many times will the selection process
need to be carried out in order that the proportion of recessives
in the lagt generation should be less than 0-01? O

Here r = 4/25, and it iz required to determine # such t};%t\

'\

L &

4/25
Ttn.2/5p < oL N

n must at least equal 8, that is at least 8 se]ectionsﬁqﬁét be made.

CORRELATION BETWEEN THE QO\IJ?OSITION
oF SIBLINGS

It will be agsumed that there is a Poplﬂatlon which is genetically
stable and in which the mating,standom. The proportions of
dominants, hybrids and recessives are p, g and r for both male and
female. By an applicationof the fundamental probability laws,
a3 at the beginning of this chapter, the probability of a pair of
offspring having giv: *gemetlcal composgitions may be calculated,
and hence the GOrxjela,tlon between the genetical compositions of
two offspring. «

If the popu(atxon is genetically stable, then, as hefore,

D=y, g=2gra-gn, r=r

S

IfXx J\and X, are the two parentsand Y, and ¥, the two offepring,

}’{ (¥, = AA) (Y AAY)
= P{(X, = AA) (X, = AA) (T, = AA) (T, = AA)}
+P((X, = AA) (X, = Aa)(T; = AA) (Y, = AA)}
+P{(X, = Aa) (X, = AA) (¥, = AA) (T, = AA)}
+P{(Xy = Aa)(X, = Aa) (¥, = AA) (¥, = AA)}. .

The other possible matings can be neglécted because they eould
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not produce offspring the genetical composition of which was
AA, After expansion of the probabilities, for example,

P, = Aa)(X, = AA)(T; = AA)(T, = AA)} ~ P{(X, = Aa)}
x P{(X, = AA}} P((T, = AA)|(X; = Aa)(X, - AA)}
X Pl = AA) | (X, = Aa)(X, = AAY,
it is found that
PI(Y, = AA) (T, = AA)} = {1 - J*(2— yr)2
Similarly N
PUY = AN (= An) =5 (- Ry,
P, = AA)(F, = aa)} =5 (1—r, o0
: . "
P{T, = Aa) (T, ~ Aa)} = yr (1~ Jr) QP —r),

P((T; = Aa) (¥, = aa)} = (1 —\/3@4 No
P{¥, = aa) (Y, = aa)} ~ (1 671

Accordingly a correlation table (given on p. 91) may be drawn
up, each cell of which will be'the joint probability of Y, and 7,
having two given genetical“compositions.

If AA Aaand aa arearbitrarily assigned values, 1,0 and — 1,
the table of probabilitigs can be treated as a correlation table and
the correlation coefficient betweon the genetical compositions of
¥, and ¥, worked@ut. The total ‘frequency’ in the table is unity.

Hence N | SY,%,-3¥,37,
'§ ) ’ g Ty, 0p,

and g&?ljy algebra will give that p, the correlation coefficient
bet#een the genetical composition of the offspring, is 0-5. The
tozrelation between the genetical composition of the offspring
will thus appear to be independent of the original proportions in
the population. )

Erercise. Assume that there ig a population which is genetically
stable and in which the mating is random. Let the proportions
of dominants, hybrids and recessives be », ¢ and r for both male
and female. Show that the correlation between parent and
offspring is 0-5,



(o
>
w/ V3
& 7
\. O - Gﬁ.ﬂuw
VV. ] _
7)
1 e — 1) \\& 1) 4> 2 Y S[P30,
V\./
- 4 Lep—1L A wrrnw-nt L+ 1) L e
............................................ 7
R (R R
\\\\
0 (4 —1) 45 =) st -0 & (a4 fap—1) 4 GA+T) (P =) vy
¢
............................................................... \m\/
1 ah— 1) (i) o =T ¥ (4= st~ &w -1 vy
s
Ol
Ay
ereoy B[EI0T, ATats ey ..ww\d ee
v/
Y,
%.\\)
O




92  Probability T heory for Statistical Methods

ELiMINATION OF RACES BY SELECTIVE BREEDING

In Panmizia we have discussed the problem of the elimination
of recessives in a population by destroying the recessives of each
successive generation. We shall now study another aspect of the
problem whereby genes carrying undesirable characteristics are
eliminated by purposively mating individuals with others having
a different genetical composition. This type of race improvement
is an everyday practical problem, particularly in cattle breedjng,\
where, by careful choice of bulls to serve the herd, a farmer'may
convert a herd of parents with an indifferent mitk yield Tnto
& herd of descendants with & good milk yield, Let A

r, r,r,, Tgl'y, ..., I"nl‘ﬂ(."

denote n pairs of genes which it is desired to eliminate from &
race, 7,. No assumption is made whether ,@ese genes are domi-

nant, hybrid or recessive. Further, let L4
R;R;, R,R, R,R,\Y. R,R,

de{mte 7 pairs of genes belongingto an individual of race R,

Yt is desired to introduce these s pairs of genes into 7. Individuals

of R; and r, are mated. Theélgenetical composition of the first
generation must be \

o\
F =l\3@d‘e =R;r, Ryr,, ..., R, T,
gince the oﬁspripg: will receive one gene of each type from each
parent. Now mate the ¥, generation with individuals of the R
parent raceIndividuals of the F; (second) generation will receive

one of pairof genes from R, and one from F,. The gene from F,
may he'R or r. Thugs

) ) £ = R@',XEI. = R1X:l: Raxza ) RﬂXw

where X may be R or r. Suppose that this backerossing is carried
out (s+ 1) times o that

F= R, X £,

Let Pstl denofse the probability that an individual of the
(8+1)st generation will possess exactly k genes of the n genes of

type r that it is desired to eliminate, Further, let »,(s + 1) he the

probability tha,_t an individual of the Fo iy generation will possess
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a gene of type r,. From the law of inheritance of genes it follows
that 1 1 1
P 1) =5pd8) = g pds—1) = ... = 5yp(1).

pA1)is by definition the probability that an individual of the first
generation will possess a gene of type r,. We have seen that it is
certain that this will be se and thercfore

1
pls+1) = 28"

This result is independent of § and will hold for any pair of genes.
The probability that an individual of the F, , generation \wiil
possess exactly & genes of type r will be, from the hinomial

theorem, PR
Pt =_?Ii!__ 1 # 1,_1) k_ \\
kT Bl = kY \ 20 Z! O
It is desired, if possible, to eliminate the genesof 7, completely
and we are therefore concerned with thg%:?}e of & equal zero,
that is, with the probability that amimdividual of the F.,
generation will possess no genes of the type to be eliminated.
This probability will be ANV
ST
P73 T“.,(J _§§) .
As s increases without ]m@:,

\ P Pii 1
irrespective of the mumber of genes n.

Brample. If\%"12, what is the smallest value of s in order
that the most,prbbable composition of an individual of £, will
be the comfiesition of an individual of R,?

It hag'been proved for the binomial that if the greatest term
of thgfgkpa,nsion (q-+p)" is at the integer k,, then

Q (r+Dp—-lsky<{n+1)p.
In this present example it is required that &, should be zero and
hence it will be necessary that

(n+1)p<l,
. 1
i.e. that 13 (§) <1,

from which it follows that & must equal 4. '
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Bzample. If n = 6, show how the distribution of P2t} changes
as ¢ increases. From theory

6! 1y % 148-%
+r_ - I
Pk = kI(G-!c)!(28) (1 28)

and the problem reduces to that of caleulating a number of
binomial probabilities.

Table of P&}, for n =6

0 1 2 3 4 5 |,

NN

0-014,625 | 0-093,750 | 0-234,375 0-312,500 | 0-234,375 | 0-003,750M40-015,625
0-177,878 | 0-355,957 | 0-206,831 | 0-131,536 0-032,958 | 0-004;395" 0-000,244
0-448,795 | 0-384,681 | 0-137,386 0:026,169 | 0-002,804 | 0-080,160 | 0-000,004
0-2

1

2

3

4 | 0-678,954 71,574 | 0-045,262 | 0-004,023 | 6-000,201 1{000,005 —
5 NS —

6 ;

0-826,552 | 0-159,978 | 0-012,901 0-000,555 | 0-000,018; -—
0-909,838|0-086,651 0-003,439 | 0-000,073 | D-000,801 —_ —

\,/ .
Bxample. What is the smallest numper of backecrossings
necessary in order that the prebabﬂjty'!ﬁhat an individual of the
{8+ 1)st generation possessing no geniegrof type r shall be at least
~ equal o 0-99? Assume n=12. oW
It is required that PJQF:IQ:?.LO'QQ,

A 1012
ie. that (\I —~—) 2z 0-99.
O 7
In order to satisfy this i}nequality s must be at least equal to 11.

o>
BAYESVT'HEOREM AND MANDELIAN HyroraESES

Tn a pre ;ious chapter the conditions under which the applica-
tion pf Bayes’ thoorem is thought to be legitimate have been set
outyand it was stated that these conditions were nearly always
\'Erlﬁlled for Mendelian hypotheses. Ttig proposed now to illustrate

¥ means of examples the application of the theorem in this case.

Example. From the mating of two dominant-looking hybrids,
Aax Aa, a dominant-looking offspring is obtained of composition
Az, @ being unknown. This individual is mated with another
hybrid and as a result of this mating » individuals are obtained, ait

of which look like dominants. What is the a posterior; probability,
that x = Al
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From the mating of the parent hybrids we may obtain an in-
dividual the genetical composition of which is aa, Aa, or AA. The
first alternative is ruled out because we are told that the individual
is dominant-looking. Let %, be the hypothesis that x = Aand 4,
the hypothesis that @ = a. It is required to find the probability
that the hypothesis %, is true. Consider now the mating of Ax
with another hybrid. Ifx = A we have, for a single offspring, ¥,

P{Y = AA or Aa}
= P{Y =AAor Aa|X1 = AA, X; = Aa} =1,
If # = a then O\
P{Y = AA or Aa} . O
= P{Y = AA or Aa| X, = Aa, X, = Aa} &3
Hence the probability of obtaining # dommant—lookhl?g\oﬁ'spﬁng
under hypotheses %, and ki, will be \
P{n{AA or Aa)| R} =1 \x\\
P{n{AA or Aa)|h,} = 1L)’@
The @ priori probabilities of the hypo;bheses A, and 2y will be

Plh} =4 Pl =1
for the possible offspring from “the mating of two hybrids are
AA, Aa, aA and aa and the(ast alternative is ruled out because

theindividual isdomin aQt(lo’oking All the probabilitiesnecessary
for the calculation ofprobabilities by B&yes theorem have been
enumerated. Accordmgiy

Pih, | n{AAov-Aa)}

\i\ PR P{n(AA or Aa)|h}
f{kl} P{n{AA or Aa)|k}+ Plhy} Pin{AA or Aa)|hy)
O3
RV R RO \
and Py | n(AA. or Aa)} = ET%)“;
Let n = 4, Pih, | 4{AA or Aa)} = 0-61,

Pihy | 4(AA or Aa)} = 0-39,

and we should not be certain of either hypothesis unless more
offspring from a further mating of @ with a hybrid were obtained.
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Example. A certain pair of genes has the property that pure
recessive individuals with the composition rr possess a certain
defect X, while the dominants RR and the hybrids Rr are
normal. Consider the following pedigres in which one in-
dividual, O}, possesses the inherited defect, X, all others
appearing normal.

A, x4,
—
Blbl-(}[i’2 ..!i’z,p[cb’4 O\
' Us . O
Cy(rr) C, N

Cy and G intend to marry and it is required tt‘);.\czmlcu]ate the
probability that a single one of their offsprin yrould possess the
defect X. Assume that 4, and B, were seletted at random from
a population of apparently normal individuals and that the
probability that any one of these (Ha% a hidden gene r is
p(r) = 0-001. (B.Sc. London, 19379\

It is stated that C; is rr and_ that both B, and B, are normal
individuals. It follows that.beth B, and B, must have the
composition Rr. Further,since 4, and 4, are normal, then either
4, or A, must have the'epmposition Rr. Let, 4, be the parent
who passed the r gene 'to B,.

The offspring from the mating of B and B, can have the
compositions RRCRr or rr. G, is normal and cannot be rr and
we have therefore

¢ \.‘.
AN P{C;=RR}=}, P{(,=Rr)=2.

This qo:mpletes the left-hand branch of the pedigree,
~Lieb us now consider the right-hand branch.

NP(B, - RR} = P{(4, = Rr) (4, = RR) (B, = RR))
+P{(4; = Rr) (4, = Rr) (B, = RR)}
= P{4, = Rr} P{4, ~ RR}
x P{(B,= RR) | (4; = Rr) (4, = RR)}
+P{4, = Rr} P{4, = R}
* P{(By=RR) | (4, = Rr) (4, = Rr)}.
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It is known that 4, must be Rr and therefore
P{4, = Re} = 1,
but what is the probability that 4, is & dominant or a hybrid?
We are told that the probability of an individual possessing a
hidden gene of type r is 0-001. It follows therefore that if an

individual such as 4, or B, is chosen at random from the
population,

P{Ay= Rr} = 0001 and P{4, = RR} = 0-999.

Hence : :
P{B; = RR} = 0-999 x 1 +0-001 x 1 = 0-49975.

Similarly P{B, = Rr} = 0-50000 (v.’;.

and therefore - P{B; = rr} = 0-00025, \\

B is, however, reported as normal angd accordmg]y the
@ posieriori probabilities will be N

P{B, = RR} = 0-499875,
P{B, = Rr} = 50015,
The @ priori probabilities that 0«313 a dominant or a hybrid may
be calculated in the same WY as for B,.
P{Cy = RR} = P{(By= RR) (B, ~ RR)(C, = RR)}
+2{(B; = RR) (B, = Rr) (C; = RR)}
O+ L{(B; = Rr)(B, = RR) (C, = RR)}
NG 4 P{(By = Rr) (B, = Rr) (C, = RR)}.
Expan&l‘tg@ci substituting humerical values we have
Q - P{C, = RR}.= 0-74956
and: by a similar process
QO P{C; = Rr} = 0-25031, P{C, = rr} = 0-00013,
whence the probabilities a posteriori for C; can be deduced to be
P{Cy = RR} = 0:74966, P{C, = Rr} = 0-25034,

Let ¥ be the offspring if 0, and € marry. It is required to find
the probability that ¥ will possess the defect, i.e. that ¥ = rr.,

P{Y =rtr} = P{(C, = Rr)(C; = Rr) (¥ = )} = 0-042,

LeT i
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Ezercise. Consider the genes R and r as given in the preceding
example. Let 7, and 7, be two consecutive generations of a
population. Denote by ¢, the probability that an individual,
chosen at random from the apparently normal individuals of ¥,
will be a hyhrid (Rr). Assume that the matings of apparently
normal individuals are at random.

(1) What is the probability, ¢,, that an apparently normal
individual, ¥, of ¥, whose parents are externally normal, will bg
& hybrid?

(i) What is the probability, P{(Z, = Rr)(Z, = Rr) | n}{_$hat
the apparently normal individuals Z, and Z, will higve the
compositions Z, = Rr and Z, = Rr when it is known’j?h'&t their
offspring, # in number, are all externally normal ¥

(iif) What is the probability that an apparently normal indi-
vidual, W, of F, will have the composition \RT, given that his
parents and (n — 1) brothers are known tqibte'éxternally normail ?

(iv) If the probability in (iii} is gz(n),.ﬁﬁd the limit of g,(n) as
% tends to infinity. Put ¢, = 0001 and'n = 1,2, 3, in turn and
see how the knowledge that the garents and siblings of W are
externally normal influences theprobability that W has a hidden
gene, r. (B.Sc. London, 193%) "

P4\

~
REFEQE’NOES AND READING

Any elementary text-book on geneties will give the reader more
genetical terminology than has been assumed as known hers, Applica-
tions of probapility to genetical problems are spread widely through
genetical literfitlite. Wo may mention two books by K. Mather, Statistical
Anm',ygia\zﬁ\l%ology and The Measurement of Idnkage in Heredity, in
which thevstudent will find & number of biological problems treated
statist’;g&]ly. Ohapter_' X of R. A. Fisher, Statistical Methods for Research
Wotkers, may also be read with profit.

#\The main ideas of the pregent chapter were obtained from lectures by
Ngaal Pearson and J. Noyman. The interpretation of these ideas is the
writer’s own.



CHAPTER IX

MULTINOMIAL THEOREM AND SIMPLE
COMBINATORIAL ANALYSIS

Thus far in probability we have been concerned chiefly with
fundamental probability sets the elements of which possess two
alternative characteristics only; an event may happen or not |
happen, a ball may be black or white, and so on, No discussion
of diserete probabilities would, however, be complete withqil{z
gome investigation of the case where an individual of the fimda~
mental probability set may possess one of several, Merent
characteristics. The binomial theorem gives a method for the
caleulation of probabilities when there are two alte\snatl\e es; we
now turn to the multinomial theorem which apphes to cages in
which more than two alternatives need to be\honmdered

In stating that an element of the fundame‘nt&l probability set
may possess any one of k mutually exelusive properties, these
properties being the only possible, wg are formulating a general
proposition & particular case of whmh might be that an event
may happen in k diffcrent ways sand so on. If the fundamental
probability set is composedraf IV elements, N; of which possess
the property 4,, IV, of which possess the property 4, ..., Ny of
which possess the property 4,, where the N elements may be
actual recorded happenings or a mathematical model, then p,,
the probability: that an element of the fundamental probability
set possesses the-property 4;, will be

) _ o
N p; = %7' (6=1,2,..,k)

by defiﬁition
“Sitppose now that » independent trials are made. The prob-
ability that a single trial will result in an element being found to
possess a given characteristic is defined, and we proceed, as in
the case of the binomial, to ask, what is the probability that as
a result of these n trials r, elements will be found to possess the
character 4,,r, the character 4,, ...,r; the character 4,1?
MurrinomisT THEOREM. An event may happen in & mutually
exclusive ways which are also the only possible. The probability

72



100 Probability Theory for Statistical Methods

that in # trials the event will happen 7, times in the first way,
7 in the second, ..., 7, times in the kth way is

!
* 7L ey x
L 1 |_,1'.011_p22 e P
¥y:7y! e gl

where p; is the probability that the event will happen in the ith
E
way in a single trial and 3 Ppy=1.
i=1
Since the k' ways are mutually exclusive and are also the only
possible, the event must happen in one of the given w&yg,\"ﬁ".}t
were required to find the probability that it would happemin the
first way for the first 7y trials, in the second way for the'next r,
trials, and 50 on, the probability would be simply \\

PrOR ... pif.
No order, however, is specified and it is I],ebfe\séary therefore to

enumerate the number of ways in which 5% s 7y, trials can bo
arranged subject to the restriction that )"

nH Tt = .
The expression (p, +p, +... + pk)“ is the product of

(B @a+ ... + ;)
) :
by itself n — 1 times, 1@\

(p1+p2+...+pk)’-‘fz.'..’

A/
= AR 4 p) (Pt pyt oy . (i, TPt +py).

Every term(in the expansion of the left-hand side is formed by
taking ongsymbol out of each of the 5 brackets of the right-hand
side. I;fe}ice the number of ways in which any term PEOR ... P
vl @ppear in the final expansion will be the number of ways of
a%&nghlg # symbols when +, must be P> 7y must be p,, ..., 7,
must be p,.

This is the same requirement as for the arrangement of
probabilities. It follows that the probability of obtaining
rials of the first kind, 73 of the second and so on will be given by

he complete term PUPF ... p7 in the expabsion of

(pl+p2+...+pk)“
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and that this probability is

!
-—.n el 1‘3 x
,rlf ?,2 T PP O

The expression (p,+p,+ ... +p,)* may be spoken of as the
generating function of the probabilities.

When only two alternatives are possible, such as when an
event may or may not happen, then

N

==k r=n-k p=p p=1l-p=g,
Pe=Py=..=pp=10 R\

and the probability that an event will happon exactly .?c times

n # trials is t \
i fd 0\~\

Fn—1 2"

ag found in Chapter 1t N

Erample. A bag contains 5 white, 7 greenk 12 red and 14 black
balls. The balls are indistinguishable frpm.each other except by
colour. A ball is drawn and replaced; after its colour had been
noted, on ten occasions, If any ball ivas likely to be drawn as any
other, what is the probability tha,t of the ten balls seen 3 will be
white, 3 green, 2 red and 2 b.la,ck?

M 101 14)
AT EYETEY 33 38 38

The binomial a,nd multinomla,l theorems are, if equal prob-
ability of all elements in the fundamental probability set is
assumed or es‘ba“bhshed simple propositions which fit into a
general mathgmatical scheme of arrangentents generally known
as combm\a.tonal analysis. The ideas and theorems used in
Gombugatonal analysis, as far as probability is concerned, are

T Wew—many of them were known to Laplace—but they do
n§ﬁ appear to be as well known as they should. We may discuss
here certain simple aspects of this analysis both in relation to the
theory of probability and in its application to statistical method,
but it will be necessary first of all to define certain qua,ntltles and
to state some of their properties,
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DIFFERENCES OF ZERO

If 2, a,, ..., 2, are a series of numbers, or the values of a given
funetion at suecessive entries of the tabled argnment, then it is
conventional to write

Ty
Az,
Xy Alp,
Az, Al O
Xy Az, Atz A
. 3 . 7
Az, , Az, . R\
Xy A oo A Xy . . \J
3 T -'l . \
A.’Ed A 3‘3 ™
‘.
\:"\\.
N4

where Az, = z,—2,, AZp, = .f_'\::c2 Az, A xl,w\\éﬁxg A2, and so
on. The differences associated with z, ara\then spoken of as the

leading differences, O\ v
If o, = a8 2, = (x+ 1), .. (a: Fen-—- 1), then we have
at .sf’*
Az D
(x+1r¢ Algs Q
Al 1F ,.\ Adgs
x4+ 2y A\ 41y Adgs
Az -2y A+ 1)
{x+3) Q Aﬂ(ﬁ:-.—2)s Az + 1)
: { \{\“
and fu.}(h\er, if x is put equal to zero,
AN _
'"\) o &(0)3‘
\/ 18 A2(0)s
A1y A%y
98 AZ(1) A0
A2y A1)
3 A%2) AS(1)s
A3y
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The leading differences A(0)%, AX0), ..., A"(0) are named dif-
ference quotients of zero, or more often Smely differences of zero.
It is easily proved that

AT(OyF =r! iHr=s,
and A0 =90 ifr>s.

It is possible to show (see for example Milne-Thompson, p. 36)
that the following recurrence relationship holds:

AT(O) = rAT(OF-1 +rAT1{0p-, \
_ _ O
or, if each side is divided by !, then N
ATy _ A0t A0y
e N

It is curious, since these differences hswe been used by probabilists
for over a century, that no table of them appedred before 1925,
when Karl Pearson and E. M. Eldertoun’ “tabled the expression
Ar(0y+#/(r + s)! for values of r and s ranging by integer values
from 1 to 20, W. L. Stevens, who was ‘not aware of this earlier
table, caleulated AT(0)f/r! for r afid s ranging by integer values
from 1 to 25, in 1937, A strgightforward relationship exists
between the rth differencegofzero and the Bernoulli numbers of

order r, namely e
L\
T LA
A (?) =~ 8 1B§:’;} for all »<s.
7 Q; rlig—r)!
"\~;\(;) ¥ # S! B(]_) B(f
Generally\;Bs == E (1 )gl(s ! =

the ﬁ(st ‘ten Bernoulli numbers obtained from this relatlonshlp
b\ma ‘after BY,
Bp=1, Bp=-I Bp=f@r-n, Bp=-Teo),

Bgﬁzgza(lwa_ﬁg(}r2+5r+2), Bg‘)_——(r—l){Sr’a Tr—2)

BY = 4032 (6375 — 31574+ 31573 + 9152 — 427 — 18),
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re v
= — 1153 (9r° — 63r8 + 105353+ 772 - 427 — 186),
?’ |4 e
P = (135r7 — 126018 - 3150/ — 84074 — 23457% — 54072
BY = 1560 (135 +
+ 4047 + 144),
2
BY = “7;?} (1577 — 18015 + 63015 — 448/% — 6657 + 1002
+ 4047 + 144)N\
O T (00,9 _ 1485:% + 6930r7 — 8T8 — 80855+ LN
Bis 101,376 % T ‘

'\
+8106p4 4+ 11,7925 -+ 206852 — 2288r=768).

When r =1 these numbers reduce to the quanfibies usually
designated Bernoulli numbers. Tt is possiblé by the use of
Bernoulli numbers of order r, to solve any Qrobability problem
where § —# is small without recourse to tahles,

'
Q"

ol

A SIMPLE SYSTEM.OF ARRANGEMENTS

Assume that there is a box Bwhich is divided into N equal and
identical comparbments{ % identical balls, where k< N, are
dropped into the box@t.random and no restriction is placed on
the number of bally which may fall into any one compartment.
The problem willgensist in enumerating the number of different
Patterns into xﬁh\ich the & balls may arrange themselves among
the ¥ com,gai}bi:nents.

If i Mually likely that any one ball will fall in any one
compaxtment, then the first ball will have a choice of & equally
likely alternatives; o will the second, and the third, and so on,

‘go)that the total number of Patterns in which the I balls may
arrange themselves is N*. This total number of patterns will be
the sum of the sets of different Patterns in which the % balls may
fall. One set of patterns will be when the balls fall into % different
compartments and % only. They cannot fall into more than k
compartments because there are only % balls. Another set of
patterns will be when % balls fill exactly £—1 compartments,
which will imply that &—2 compartments contain one ball each
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and one compartment has 2 balls, and so on. The different patterns
may be enumerated in the following way:

Eballsin k compartmentsine, . N(¥ ~1}... (N -k + D) ways.

E o, k=1 ’ G NN -1 .. (N—k+2) "
k k—t ' Cpyg N(N—1) . (N —k+t+1) ,,
k 1 v o N o

Cpy Cgy - .o, & Are constants for a given & and depend only on lr\
That is to say, once the number of compartments to be ﬁ].f
fixed (say k—t), the distribution of the k—¢ comp&rtments
among the N has been given and it is only left to en: raérate the
possible distribution of the % balls in the k—1 compPartments. All
sets of patterns have been enumerated above a{ld hence
Nl N1 4
Ne= et e g \
R N1
(- w* TR

Tt remains to evaluate the ¢'s *This follows lmmed.la,tely by
differencing * both sides of the equation ¢ times for¢ = 1,2, ..., %
and then putting N e@l iero whenoe

- A0}
==

+ 2

\ '\ J
and we have \“

W1 OA{OE  N! A0

Nk’\(N i =gt 21 T
O Nl A NI A
\\}... +{N—t tT +---+(N_k)!_ L)

The enumeration is, however, not yet complete. We have shown
that the total number of ways in which k balls may arrange

* This ig in effect an application of Gregory’s theorem, viz.
ulz +nw) = Froulzr) = {1+ w%)“u(x)

!
= ) f——— WALM(‘E) +

T Y ( 2A%(x) 4+t w"A“u(x)
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themselves in ¢ compartments is ¢,, as given above, but it is of
interest to enumerate the different distributions of k within these
t compartments. Thus we may wish to know in how many
compartments there will be just one ball, and so on. This process
is sometimes called enumerating the different partitions of & by
f. An easy extension of the multinomial theorem, which gives the
number of ways in which e, compartments contain just one ball,

@, compartments just two balls, ..., a; compartments just j
balls, is il N\
(L)%a, (21,1 (jTi%a, 1’ O

where the restrictions are that
_élai =t and _éli.ai =k (v

and some, butnot all, of the a’s may be equal td zero. The sum of
this expression, taken over all possible pa{fsiﬁons of k by ¢, will be
equal to ¢, \S

Example. Five balls are dropped: at random in 10 compart-
ments. Given all eonditions are eqitally probable, in how many
ways can they arrange themsplv:és‘ in order to occupy 3 compart-
ments and 3 compartments‘enly ?

Hore ¥ = 10,k = 5,¢ <3

The number of Wa,@iwﬂl therefore he

\ 3 a3
RS B LTI
¢/ 3!
It has been s{mvm that
."\:~
W AHOY 5! _ 55.4
& Tar et =05t -

gheitoial number of ways will be therefore 18,000,
\ To enumerate these ways in detaill we must dizcuss the
different partitions of 5 by 3. These will be

311

2 2 1
and we therefore have

51 y 51
aneiey ~ ' Eigean = 15
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which we note add together to make 25. Hence the number of
ways in which 5 balls may occupy 3 out of 10 compartments, with
8 balls in one and 1 in each of the two others, is 7200 ways, and
with 1 ball in one and 2 in each of the two others is 10,800.
Finally, since the balls are dropped at random and each ball
is equally likely to drop in any given compartment we may
calculate the probability for each partition. The total number
of ways in which the 5 balls may distribute themselves in the
10 compartments is 10°. Hence ¢

7200 x
7 = — [ 28N
P{3,1,1]|3,5,10} 190,000 0-072, R
10,800 \ .
¥ b = 2 = {1 (N".
P{2,2,1|3,5,10} 100,060 0108,

and the total chance that if the 5 balls are droppg}d\ at random
they will occupy 5 compartments only is 0-186,

Erample. What is the most likely distribtft\mn of balls if 5 are
dropped at random in 10 compartmentg®™

5 balls in.1 compartment im\ > 10 ways
b » 2 compartmentsiin 1,350
5 ” R - 15,000,
b » 4 rr ":.:'” 503400 ¥
5 5 T\ N a4,240

” LEN 3 »

N\ Total 100,000 ,,

Hence the most likely.\dis}ribut-ion is 6 balls in 4 compartments.

The problem gohgidered by Laplace was a little more compli-
cated than the feregoing. He considered a list of » different
numbers all’gf which had the same probability of being drawn.
r of these\é,a‘fﬁbers were randomly chosen. They were noted and
rctunj.e.:ti}o the population of . He then discussed the probability
thatiafter i sets of drawings of #, ¢ or more different numbers
wonild have been seen.

The number of distributions possible in a single set of r draw-
ings is ' n!
since all alternatives are given as equally probable. The number
of distributions possible in ¢ sets will be '
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The number of cases in which the number 1 will not be dra;wp will
be given by excluding that rumber from the list of 7. This will be

and therefore the total number of ways in which the number 1
can be drawn is

! ? (n——]_)T )i__(i)éAl -2 n—7 1:.\
(‘r!(n—r)!) _(;!(_n—-fr—l_)! o ! (tn—=1)¢ oo »
Following the same argument it can be shown that the num]gérﬁf
ways in which 1 and 2 may be drawn is A

1y¢ e\
(ﬁ) A (n—2)(n—3)... (n — ), 'm:\a

from which, by further extension of the argument, the number
of ways in which ¢ different numbers may, bé&drawn is
1y \S, _
(;_.) A=) tn—g~1).... (s =D C(m, 7,4, ) (say).

The probability that g different gilfﬁibers will be seen in ¢ sets of
drawings will therefore be A\

frim—r i S
Cln.r,4,q) (—(—n,—)l\

_A“((n—g)‘(n-g—l)---(ﬂ—?’))‘_ .
= W)_(?—T-F—I)JT__ = Pln,r,1,q) (say).
COROLLAI}(;}I}' the probability is required that after % sets of
drawings a}(ﬁ, ‘of the numbers will have been seen, then, writing
 for the @{ummy variable to be put equal to zero after differencing,

~O Dy A1) 1)y
N Plm,rs4,m) = =Ty (n—ry 1)y

Cororrary. If the number drawn on each cccasion i« 1, ie.
fv =1, then the probability that after ¢ drawings of one number
Ul 7 of the numbers will have been seen is

Aw(o)d

P{nala{i’an}= _nT"-
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Ezxample. A court of discipline is drawn from 4 members, 2 of
which are chosen atrandom for any one sitting. Whatis the chance
that in six sittings all four will havo served?

_ (n{n—1)(n—2)... (m—r+1))i = (4}/21)8 = 125,
AY(g(t— 1)) = AS(0)12 — BAX(O)1 + 15A%(0)10 ~ 20A4(0)?
+ L5A%(0)8 — 6A%(0)7 -+ A%(0)8,

which may be evaluated from either Stevens’ tables or those of ~
Pearson and Elderton. The required probability is 0-94.

Hzample. The committee of a learned society is 12 in number, )
One member retires cach month and iz replaced by a new Ectélbn.’
If the retiring member is chosen randomly, what is the probability
that after 12 months have passed, none of the membery'will then
have served 12 months? o)

We require

Alz(py1e 121\:
P{12,1,12,12) = 41(2_3 _&

The evaluation of a probability such as A(0)* is not easy when 7
and s are both large. The tahles of'the difference quotients of
zero extend, as wo have already pointed out, to » and s = 25
only, After these limits have.been reached it becomes necessary
to uso an approximation tg'these differences if the probability is
to be evaluated. \\ )

Karl Pearson discussés two such approximations, one due to
Laplace and one @Qé.td De Moivre, and remarks that De Moivre’s
&pproximatiou{:n,ay be preferred over that of Laplace in that
fewer approxitations are involved and the formula is on the
whole ea‘sia%éf application. The problem would appear to be the

replacement of the series
A
'n\; '}: 7 l &
\ ‘é(ﬂ = ]_—;r(l——)
e ¥

R e T

] ¥ 3! ¥y

by one which is easily summable. 1If we write

at 2
(1—1) for (I“E) s
T 7
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a8 did De Moivre, then '

(]

ad ¥

For r large this approximation is adequate and enables the
Tequired probability to be calculated if the values of » and s
fall outside the existing tables. For r small the Bernoulli
Polynomials of order may be used,

REFERENCES AND READING )

statistical theory and the student should read the deri¥ation of the xE
distribution from the multinormial distribution. w7

Enough has been given here for the student 45 tmderstand what is
meant by a difforence quotient of zero. For thosd\vho wish 10 take the
subject @ little further there is L., M. Milné? ompson, Caleulus of
Finite Differences, A knowledge of this paletlas is useful for many
problems in combinatorial analysis.  2W\J

Applications of difference quotients ofvzero to probability problems
will be found, among many other plates, in P. S. Laplace, Théorie des
Probabilités {1812), Livre 1L, chapim; K, Pearson, Introduction to
Tables for Swtisticians and Bigwetricians, Part 11; W. L, Btevens,
Ann, Hugen, v, p- 57, ‘Bigpifithnee of Girouping’,

For further reading in th ‘theory of combinatorial analysis the student
might begin with P, A M gp\{ahon, Blements of Combinatorial Analysis,

\\



CHAPTER X

RANDOM VARIABLES, ELEMENTARY
LAWS AND THEOREMS

During the preceding chapters attention has been confined to
discontinuous or discrete probabilities. This restriction of the
ficld is purposeful in that in outlining & new subject it is simpler
for the reader to understand if the sets of points which are
discussed are denumerable. All fundamental theorems, however, \
relating to the addition and multiplication of probabilities, dQ ;
not state explicitly that the discontinuous case is being-pon

sidered (except in the proof) and these theorems will be found to

apply for the case where there is continuity or perhéps whers

there is a compound of continuity and dlscontmu.lby‘

The distinction between discontinuity and ddutinuity will be
preserved in discussing random variables. ];sis comparatively
easy to prove all theorems relating to ra,ndmn variables when the
variable is discontinucus. When the yapible is continuous the
same theorems may be shown to begdrué using the theory of sets.
For the person interested prlmarﬂy in statistical applications,
however, it is often sufficient %@ prove the theorem for the dis-
continuons case and to seexintuitively that for the continuous
variable the subshtutwrr@f an integral for a summation sign will
generalize the theoré '

DEFINITION. & i8'a random variable if, whatever the number a,
there exists a pmba,bdlby that x is less than or equal to g, ie.
if P{x<a} exjigts.

* This is_§uite a general definition. Consider the case of a bi-
nomial, {ﬁnbabﬂ.lby

ll ol

K \ \ NS P{k< kl} }J mpkgm—-ﬁ, #

E‘he probablhty that &<k, exists and k is therefore a random
variable. If x is normaﬂy distributed, i.e. if

I

then z is a random variable, normally distributed.
* [k,] = the largest inveger nob greater than %,.
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Derixrrion. The elementary probability law of the discon-
tinuous random variable z is a function the value of which
corresponding to any given value, say 2 = 2/, is the probability
that o takeos the value z', i.e,

px(x‘l) = P{x = :1':’}.
When the probability law of x is discontinuous 2 will be referred
to as a discontinuous random variable and when continuous as
a continucus random variable, ~
Dzrmnrrion. The integral probability law of a continuows
- random variable x is a function F{x) having the propertg‘t—l;hxt

8 K
Fia) = Pla<a<fi} = f plE)dz, AN

‘where & and # are any two numbens. plx) is g@fﬂﬂﬁﬁmes called
the elementary probability law of the continupus variable x and

sometimes its frequency function. AN
7! o\
= ik
Example. P, . AT !:p.g/u

is the elementary probability Ia.*}v{lof: a discontinuous random
binomial variable % o0

. U R\ I fz—-£\2
Erzample, .p(«c) = @te exp |:—§ (——o_ ) :l
meay be spoken of as,the elementary probability law of a con-
tinuous random ngﬁn I variable . Tts integral probability law

will be o\ 1 4 1 (x—£\2
s aies o[ =55 e
DerFIurion. Assume thatz is a discontinnous random variable
which #finy take the mutually exclusive and only possible values
%y, Ugyh ., Uy, Let the clementary probabiiity law of « be written
pk'(u}) for i =1,2,...,. Then the mean value of  in repeated

mpling o, in other words, the expectation of x is defined as

m
g(ﬁ:) = Uy Pm(ul) Uy ]7!(152) +. Uy » pm(um} = igl ;. pz(ui)-*

* Ido not like tho growing English practice of writing the expectation
of x as Ex). F has passed info common use a8 o linear difference
operator in the caleulus of finito differencos and there exists the possibility
of confusion if the same symbol is used for expeetation. T have followed
the continental practice in using &,
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TrrosTrRATION. k is a discontinnous random variable which
may take values 0,1,2,...,n with corresponding probabilities
B, oas Prvscoes By gy vens By . What is the expectation of k%

Ek)=0.P, g+ 1.B, 1+2.P, o+...4+47. B, . +...
' P 2 I %] P
+n. fn.n““kgn miﬂg = np.

CororrarY. If kis a discontinuous random variable, so is k2

or any power of &, and the expectation of £ is QY

E(RE) = 2. P, J+12. P, (4. +10. P ... A

{ N

7 ' AN
+n? P, .= E kzkﬁpkq“—kcn(n—l)pz+np.

DxrrixrtionN. The expectation of a continuous gndom variable
x is defined as +o
&) = f x.p{x) dm\
— ~

where p(z) is the elementary probabllwy Taw of  as defined.

CororLary. If p(x) is the elementary probability law of
a continwous random variable &} then the expectation of a
continuous function of z, s&yf 337 will be

) —f f@) ple) e

It is clear that ¢ %ﬁeetatlon of a function cannot always be
evaluated. Forjex mple congider the simple probability law

4

for g}(m).—l for 0O<x<l -
.'\“ =0 for x cutside these limits
and ﬁx\g the expectation of 1/x.
T\ 1 1
N° ol Ztde=1
oY ),

and this is infinite at the lower limit. Or again, suppose that the
elementary probability law of the discontinuous random variable
kis o1

p(k) = T for k=0,1,2,..., +c0
and find &(&!). EGk) = §‘k;!e——1=e—1§ 1,
r=o k! E=0

which cannot be evaluated.

LPT B
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TaEOREM. If 1 is a discontinuous random variable which may
take values in ascending order of magnitude u,, u,, ..., U, (these
values being mutually exclusive and the only possible ones),
with corresponding probabilities p,, p, ..., P then

* < E(X) < Uy
It is given that Uy Uy S ... S W

-

By definition o -

7 &(x) = 21“51’1:‘5 iZI Uy Py = Uy,
i =

N
A\
m _ m ;:\
Fl)= 3 u;p;> T wp; =u,. A
i=1 i=1 N

Hence 4 < £(x) S u, S

and it follows that the expectation of must lie between its
greatest and its least values. . \\

TrroREM. If 2 i a continuoua“f&ﬁdom variable whose
elementary probability law is p(x),then the expectation of any
bounded function, f{z), of exists, and is contained between
the upper and lower bounds,oi';ﬂie function,

A function f(x) is said toBebounded if there exist two numbers
#i and M such tha m<"m <f@)< M.

£ )

By definition &
Nt +m
eS| teyerte<at [*“payan - ar,

O o
\v ?mf p(x)dr =m,
—w

:§ .
Henge m< E(fx) < M.

"\

“Tb-has been tacitly assumed that f(x) is real. If fz) is a complex
\function then it may be said to be bounded if there iz a number
3 such that the modulus of this function does not exceed M.
The expectation of the real and imaginary parts of the function
may each be demonstrated to exist,

Ezample. The integral probability law of a random variable x

F(z)= Pla<a<f} = @%;fjexp [—% (&%g)z]dx.

is
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Find
(i) &(x), (ii) &(x®).

o el e 459 s

L

The mean value in repeated sampling of a random variable x
which follows the normal probability law is thus seen to be thes
mean of the normal curve and the expeetatlon of its square

o+ £2, 2 AN
Example. The integral probability law of a random Gariable
xis O3

Flay= Pla<e<fi} = TTf)j xfledy  for 0:&0&4,84 + 00,

where f is an integer. Find the expectatior\of xk,

1 +ea S F{Nk} {(f+E—1)1
"“(x”)zr_uﬁfo SRR e R TS )

provided % is an integer, reme{rghenng the relationship
T(f) = (f~DIED and T(0) = 1.

DxrinrrIoN. The relative probabmty law of a discontinuous
random variable x,, ;-e“la\mve to other random variables

Y
\ Lo, Ty, weny Ty

iz a function t;h\é}ra,lue of which for z; = u, given

=T\'"’ Xy = 2, =£ .., Tp=1w,
will be'@se relative proh&bﬂlty that 2, = u, given

”i‘é;\::" Ty = ¥, =£ .., L=,
) fpxl | Eps By vers Tk (u | v, g’ e w)
= P{(@, = u) | (zg = ), (@3 = ), .0 (g = w)}.
For two variables this reduces to
Poyta, (8] 9) = P{{@, = 2} | (22 = v)}-
This definition may simply (and obviously) be extended to meet

the case of the continuous random variable.
8-z
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Derixrrion. If the random variables %, and x, are independent,
then

B ta, (u]v) = Pz, = u) [ (g = v)} = Pfle; = u)} = P, (%)

TaeoremM. The expectation of the sum of two discontinuous
random variables is the sum of their oxpectations, whether the
variables are independent or not.

Consider two random variables z and ¥. x may take values
U1 Ug; oo, %y, Which are the only possible, with probabilitig
P> Pys - Py Y MYy take values vy, vy, ..., v, which are the only
Possible, with probabilities 2!, Doy vvy Dy Lt P;; be the (pint
probability that » takes the value u; while y takes the ¢alue v,,

ie. let Py= Py = ) (y = ;) (~.}."
then :
. noom n m ~n m
Ex+y)= 3 3 Pﬁ(“i'f'”j} = 2 X Puvy ¥ P,
i=1§=1 i=1jo1 N

The order of summation is quite arbitriiiy and we may write

therefore oS =

k) i)
Fety)= T u 3 I D By
i=1 j=1 ey o 7=1 Ta=1
Now since B, is the probability, that « takes the value w; Wwhile
L N
y takes the value v, 3 P,;will be the probability that x takes
i=1 ¢
the value u, while 4 takes wny of the values U3, ¥y, «0u, Uy, Henice
}§\Pﬁ = Py i§1 L = pj.
It follows that ()~
SETY) = T unit 3 v = )+ 6
$/ i= i=

and thqﬁéorem is proved,

Taeerem. The expectation of the sum of % discontinuous
ranidom variables is equal to the sum of their expectations.
N_Let the & discontinuous random variables be z, &, ..., %5 By
the preceding theorem

k
é”( ;1 mi) = é"(xl+x2+...+xk) = §(x1)+f(wz+w3+...+xk}

and therefore by continued application of the theorem

6( é}l xi) = é}l &lxy),
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Ezxwmple. Assume that there are % random variables

T Ty ey Xy

and that :
mt
Py {t) = —e—me fort=10,1,2,...+w0, and ¢=12,...,k
Find é"( p a:%-).
i=1
For any x; we have
o m%
Elx;) = § t—!e—mi = My O\
By the preceding theorem . O
& % N
o2 e)= 3 o= Im 2
i=1 i=1 ..,\

The theorems regarding the sum of % randoniwiiriables can be
proved to hold for either continuous or disegntinuous variables,
The proof of the theorem will be assumed for the former case.
THEOREM. x and yare two digcontinnous random variables, If
% is independent of y then y is independent of .
Let the joint probability law, of L2y be po,,

Daylur) = Pl = u) (y = o)} P{(x =u)} P{ly = v)| (x = u)}
= P{ly = o)} P{{& > u)| (y = v)},
¥ is given independe i oby. It follows by definition

Plly = o)} Plle = w) | (y = v)} = P{ly = v)} Pz = u)}
and hence, from(the expansion of the joint probability law that

\ Py = o)} = Plly =) |z =)}
Ifzig 1ndqpendent of ythen 1t follows that y must be independent
of . '.‘

THEORLM The expectationof the product of two discontinuous

‘aniom variables is equal to the product of their expectations
%’ the variables are independent.

Let the two random independent variables be z and 4. Let the
only possible values for « be u, us, ..., %,, With corresponding
probabilities py, pg, ..., p, and for y, 21,9, ...,9,, With corre-
sponding probabilities pj, p}, ..., Py Let F; be the probability
‘that % takes the value u; while y takes the value v;.

T

i
Then foy)= X X wn Py
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Now
By = Ple=w)(y = v} = Pl = u,)} PY(y ~ ) e = )}
and because given = and y are independent, it must be that
Fy=Plle=u)ly =v)) = p,p,.

Substituting in the expression for the expectation of (x.y) we
have
m

3 m , = . -
Elx.y) = izl _21 WPy = ixl U P j}.:l by = A(r) By
= JE - —

Thus if the two random variables are independent, .g’li‘es.\ ex-
Pectation of their product js equal to the produat ef their
exXpectations. N

These two theorems, regarding the sum ad” product of
eXpectations of two random variables, will holdgdo! whether the
variables are continuonug or discontinuous. Thatheorem regarding
the product may be extended, ag hefor( &b cover the use of k
random independent variableg, \S, |

THEOREM, If L1, %y, o, Ty 810 k in{iép’endent randon: variables,
then the expectation of theip prodict is equal to the product of
their expectations, )

By repeated application of the theorem for two variables it is
seen that .

A
Ik L I3
é"( I_]l xl-) = é’(xl‘) Aﬁfg xf) =E@)E@,) . &) = |1 Sz,

' i=1
and the theoren\tl’is Proved,
Derisrrion, Yihe standard error of a random variable x i8
defined ag- L
& T = (Elx— &(2))2,
Exaingle. T f -
b»’? bﬁf 'I 8 & random varighle having as elementary
ProRability law the binomia] law of iliti hat ig its
N cerey of probabilities, what i _

It has been foung Previously that

E(k) = np, E(k?) = n(n— 1) 9 +np,
where n and p have their ugual meanings. By definition
7= =80 = 202y g1y

and hence o} = np(1 —p)

as found in chapter v,
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Ezample. n random independent variables x,, @y, ..., %, have
the same probability law about which nothing is known except
that the first two moments exist, viz.

) =E, &lz;—&x))P=0? fori=12,...,n

Find the expectation of the mean of the #'s and its standard
€1TOT,
For any = it iz given thai

fa)=t
and 0} = Ee—E@) = E@)-(E@Pr=0% (D
12 N
Let . = ‘}1 igl .x.s ' ,:’fQ 3
i N ‘1’.’:""\\
Then éa(x)=cf(—§]m,;)=—ztg’($i)=— € =¢
7 {21 KA
Y,

Thus the expectation of the mean of a sarm‘p]e that is the mean
value of the sample mean in repeate.d sampling, is equal to the
population mean. Similarly . ,,""

A= ( 3 -l z:x{)}im-f(%(x@ étw))

i=1 F=i4

L ggl(x.,;_(;»\@%w % 3wt -6 |

Tt will be noted.$hat in finding the expectation of the mean of
the » variablés'no use was made of the fact that the variables
were given' 1hdependent Thus the fact that the expectation of
the sahplé mean is the population mean is unaltered by
dependence between the 2's. The same is ot true for the standard
erroiof the mean because the cross-produets of the right-hand
5106 of the expression immediately above can vanish only if
the variables are independent. Given that the variables are
independent it follows that

£F B (=8 o)

Y S flo— Ew)) - Elay) = O,

i=1 f=i+1
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Hence the (standard error)? of the mean of a sample of # is
"
oh= T o Ew) = o¥fm,
=

& fact which is well known,
This result is true for any » independent variables possessing
the same probability law and for which

) =§ and of = g2,

although it is most commonly made use of in the normal ‘odse.
Dzrovition. The correlation coefficient, p;;, between any.two
random variables z; and x; is defined as N

g = o= E) 0 Sy) N
i 2

2 »
Ty O R

where o, and o, ., are the standard errors of ayand ¥; ag previously
defined. AN

Treorem. The standard error of any lnear function

.
NN

i )
Y= 20w
i§1j~
of n random variables x,, Tyion, @, 8
. N % . 2""1@—1 n
ol = #05+2 ¥ 3 a.a.0.0.0.
¥ G4 i
=N =P

where the o’s are onstants, ; and @; are the standard errors of

%; and x; respectively, and Pi; 18 the correlation coefficient as
defined abowel

Thig thepi-ein will be trﬁe for both discontinuous and continuous

randony variables.
Lts;:fg ;
& Elx) =0, fori=1, 2,...,n,
N\ o n n
<‘§[‘hen Ey) =& X o, = ¥ oa,.
i=1 P R
By definition

2
7= =60 = 6 3 afoay)
i-1
from which, by expanding the bracket,

oy = gl;zzl a?(xi—ai}g] +2& nz—;i % ool —ay) (xj-—aj):l.

$=1 j=i41 .
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Applying the theorem that the expectation of a sum equals the
sum of expectations and remembering the definition of the
correlation coefficient we have

% n—1

o3 = X afoi+2 3 Z oc 5005 Piss
=1 i=1 j=1i+

which proves the theorem,
Example. If oty =ty =...= a4, = o 01= % =...=@, = &, and

ifo,=0,=...=0,=0ctheny =7, §y) = and
o2 2g2u—1 m '.\"’\‘

ol=—t+—= 2 X P O
(g n? i=1 j=i+1 ¥ a Mgt

If, further, the variables are assumed mdependent then
oy = o%n "

as found in a previous example, N

Bazample. Find the standard error of the sum and the difference
of two random variables (i) if they ape dependent (1) if they are
independent.

For the sum of two varlables let

acﬂ-oc,;—...:.,“—o, oy =y = L,
Then : Oy =2+,
(O
and oy =01+ 0]+ 2010301,

If 2, and x, are, independent then
A\
'\:“: 0-2 — O'?_ + O-'Z

For the@ﬁerenee of two variables let

‘~~:; g =ay=...=0, =0, ;=1 az=—L
N
~Then Y =3y — Ly
and 02 = a3+ 0} — 207,040

If &, and x, are independent then
ot = o}-+o}.
Exercise. Find the standard crror of the sum of three random

variables, @, +a,+ %, if the variables are dependent and show
how this simplifies if they are assumed independent.
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- Ezample. A bag contains N balls, Each ball has a number
stamped on it, the numbers being u, u,,...,uy. It may be
assumed that it is equiprobable that any one ball will be drawn
and the probability of drawing w,is /N fors = 1,2,..., N. From
this bag » balls are drawn and no ball is replaced after drawing.
What is the standard error of the mean of the #» numbers thus
drawn?

. Let the numbers drawn be 2y, z,, ..., %,,. It is required thera&)re
to find o, where

" N

— A

F=- 3 . L™
Roi=1 |

The expectation of any given number will be R N
S =yt tay L1365 .
)= tegt... iy = N é}lug =% (say).
N
Hence the expectation of Z will be 7>

A

\l‘
c?(i)*é”(l ng ;l'gg(m)—-ﬁ
SN ST T

This result is what might;lié% been expected. The standard
error of  is not, howevery8o easily intuitive. Consider first the
standard error, o, o{mi.
A 8@ = Sy
From the definltion of an expectation it follows that
: O :

N _ 1 & .
”\\U'E = &z, —u)p = K :51 {2y~ u) = V., (say).

I{{,’t'h\e variance of the 4’g, is constant. From the theorem on the

. 'gk.pectation'of a linear function we may write immediately

2 1 = s 2 r—1 =
Gi=— 20+—= 3 T @00,
ey Y e F=it+1 iy

The first summation on the right-hand side may be ovaluated
but it remains to calculate the double summation. '

P00 = E{x;— &) {5~ &(x))]

by definition. Again appealing to the definition of an expectation,
ie. the summation of all posgible values a random variable may
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take multiplied by the probability that it takes each separate
value, we have, freating the product as a unit

N N T
El(e; — € (@) (= )] = z:1 PRCEDICE u&%!m

The (standard error)? of & &eeordmgly will be

V a n:l n N-1 N
o2 _+EE'1;: iEH tEuE (=) (= u)N(N 1)°
This expression may be mmphﬁed by the following device. It‘lg
clear that N

z: —%) = 0.

7
= )

Squaring cach side

N st N _ N-1 N ”‘\_ _

0=[Tw-n] = T w2 3 I 00T
=1 =1 11200

and therefore \ O ’

N-1 N
—N,=23% X uihu)u; W)

i=1 I-= i— "

By substitution the {stacndard eu'or) of z will reduce to

|4 N Y 2 :I
oy =11 _2
* |:,\ 1211 2£:+1 N —1)

This last double sum‘ma,tlon ig of a constant and it is only
necessary therefofé) to enumerate the number of constants
concerned. Thls\w’ﬂl be

n!
2 n—2)131"
Wh .\'\\21) . p _-E'_; N—n
ell{!ﬁ = Decomes Fa= 7 N1 .

AN
\ “Wote (). When n = 1 the expression for ¢ reduces to the
variance of the »’s which might be expected.
Note (ii). If the x’s were independent, that is if each bhall had
been replaced after being drawn and its number noted, then
|4
oL = -é‘
from the expression for the standard error of a linear function.
If this expression is compared with that for the standard error of

N
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the mean when the drawings are made without replacement, it
will be seen that the latter isless, provided » is greater than unity.

TeeEorEM. Given that (i) y,%,,...,2,, are n random
independent variables, (i) &(2;)=a; for i=1,2,..,n,
(iil) &{z;—a)? =oifori=1,2,...,n, then

{17 n—1 7 12
| = =P =" 24 - — )2
& (n {Z}l (xz x) ) n2 a§l o3 + n i§1 (ai a‘) )
where a=6% and z= 1 % x. O\
' 7 i=1 NS ¢
Possibly the simplest method of attack for this ~afnci similar
problems is to employ the device of inserting the #xpectation of
each variable within the bracket. Neglectingdthe factor 1 jn for
the time being, write
.\\,‘
= _ i ¢*L
. (5’( 'L1 (mé—x)2) =& 3 [(x;— g~z —a) + (a;— G)]2
i= i=] o\
The usefulness of this device is_elear. In the expansion of the
bracket & number of cross-produets will appear. Provided =, and
s are independent, and thejare so given, then

lf@i—a,) (;—a;)] = 0

and the algebra §s Ageordingly simplified, The expansion of the
bracket becomeg )
2O

€ I @200 - E-0) 10~ D = € 3 (2;—a,)

s’%“' B _ n ?‘zln

W R E0 T T =32 3 (o) G- )]
" 3= i=1
Using the theorem regarding the expectation of a sum it is seen

that the evaluation of the first term is immediate. We need to
consider the second and fourth terms,

Lid = g _ 1 n 2 n
(,5:;1 @=a)f = né@-ay = iT?fcg’(«gl (xi_ai)) - . i§1 Bl —ai)*
Also

” e 1 "
gi-21 (o, —a) (7 -a)] = iéa( ?El (:1:1:—:1‘-))2 =

B

7
3 Slay—a)
i=1
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Hence
n 13 T
& & -a7) = 3 fla-ap 3 Sla-ag
i=1 i=1 Hi—1

e . 2 23
+ 3 (@, =8P - ¥ &z, —a,)®
i=1  i=1
_n—1

k) k2 _
= X o+ X {e,—a)p,
" =1 i=1

or introdueing the factor 1/n previously neglected
| B n—1
- - _——

g(n 1-,§1 (#;=2) ) n?

CoROLEARY. Suppose the n random independent yariables »
to follow the same probability law with mean g-and standard
deviation o. This might be the case for a sampl@ofn individuals
which had been randomly and independer}tlﬁélr&wn from such
a population. In this case 2\ N

 §

¢ N
17 B \'\\
o= 2 (=@
1 fi=1

= a
25

n

N

Fle) =a;=a, Er,—a)l=0l=g% fori=12..,n,
.

and the theorem reduces to O
1= Wy on-1
— L NFI2) = a 2.
éﬁ(ﬂ '£§1 (f:’% .’E) ) .

" ’ o\ -
Now 1 > (x,— %) m]{ibe recognized as the sample (standard
=1

deviation)?, s2. It f0llows then that the mean value in repeated
sampling of the &guare of the sample standard deviation is not

equal to the/square of the population standard deviation, but
pr{s

in fact -
% | Els?) = n n 1 o2

2 &
o\

If, therefore, the sample standard deviation is used as an estimate
of the population standard deviation, in the long run the tendency
will be to underestimate it. If it is desired to obtain a sum of
_ squares which in repeated sampling will average out to be &, then
it is clear from the equation

I 3 72 2

éa.(n-— 1 'igl (il:.s—&?) =7
that the factor 1 /(n¥ 1) should replace the 1/n of the sample
(standard deviation)®. This new expression is not a sample
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(standard deviation)? nor a population (standard deviation)?; it
is an expression which, averaged over a series of experiments, will
approximate to the population (standard deviation)?.

This elementary piece of algebra supplies the answer to the
confused question ‘Do I divide by » or n—1 to obtain the
standard deviation?’ If a meagure of the scatter in the sample is
required then the sample standard deviation

1 ®» H Q
- (32 w-wr)

O\
must be cal(,ulated If it is desired to estimate the pqpulatlon
(standard deviation)® then the expression &% n/nﬂl) may be
calculated because in the long run it will be equal to o2,

Exercise. Given (i) n independent random véﬂables each of
which has the same probability law, O

({H) &z,) =a, (i) &r;—a)* = 0%, \\
{iv) s* —% Z (x;— &), calcu]a.te .
o%h = c%”(.s'2 o {sf*))2

[Note €(s?) was found abovey]™

Gzample. (Weldon’s dice problem.) n, white dice and n, red
dice aro shaken togcthex and thrown on a table. The sums of the
dots on the upper a\ces are noted. The red dice are then picked
up and thrown sggain among the white dice left on the table. The
sum of the dof#on the upper faces is again noted. What is the
correla,tlon\between the first and second sums? ‘
Let t]:ns ‘humbers on the upper faces of the white dice be
t11,Eide WY, by, the numbers on the upper faces of the red dice.
at. the first throw be 1,15, ...,%5,, and at the second throw

\mgﬂ, taz, voes Banye Fur:lher let N

b= _E by o= 2 by ta - E Eaie
i=1 =1 i=1

It is required to find the correlation between ¢, +1, and #; +£,.
Consider first just one die. If #,; be the number of dots on its

upper face after throwing, then

) =%3.14+3.24+3%.3+3.44+4.5+1.6=3

and &@2) =3 12+3.224+1.32+1.42+1.5241.62 =51

8
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Therefore o, =Bl 49 _ 2%

For the sum
i) Ra
&ty +1ty) = ‘g(ia byt _;i 52:?) = ¢{ny + )

and similarly Et, +1y) = T{ny +ny).

Applying the elementary theorems on expectations, and re-
membering that any one die is independent of any other die, it

may be shown that ®:
)

2 __ &b — 8b ™
o.tH'rfs - ﬁ(ﬂ’l +n2) and 0-?1+fa - ﬁ(nl +n2)' 4 \

If p is the coefficient of correlation between ¢ +t; and ¢ -.j-‘!;, then
by definition 7

PO, G4t ™ EL({ty +12) —Zny +n0)) ({ + A %G’i’z + 1))
Replacing the individual sums on the right;hamd side we shall
have R

X 3

" B AN v
prusn =4 (5 -+ 3 D)

L ¢

3 B9+ 3 6a-b) ]

- o S 1] -t
L

The correlation coéfficient between the two sums {f, +£,) and
{t; +1t5) i therefore’

73 p
:"\".

=" Lie'
Ry + 7y

It may bé\nr;ted that this is a simple example of a more general
case, .H X and Y are two random variables, each composed of the
S{mi of two random variables

X=xt+t, ¥=y+i

then there will be a correlation between X and Y.
DerFINTTION. If 2 random variable x may take only the values
zero or unity then x is defined as a characteristic random variable.
If x is a characteristic random variable with probability p
that it takes the value 1, and 1 —p that it takes the value 0, then

) =1.p+0.(1—p) =P
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A characteristic random variable may be seen, in this way, to
have the interesting property that

E(x) =E(3*) =...= E@@%) = ...=p,
for E@E) =p 1¥+(1—p).0F = p
and this will be true whatever p.
Ezample. Consider a series of trials, = in number, in each of
which the constant probability of a success is p. 1f with each

of these trials is associated a characteristic random xrariabla\:c
which will take the value 1 if the trial succeeds and 0 if 1%, fails

M S() = ) = n(1.p+0.(1— p)) = np, O

Evample on expectations. In the previous chapter we have
discussed the enumeration of the patterns i shich & balls will
fall when dropped randonly in a box of N ¢empartments. It is
easy to show by direct argument that thelawverage proportion of
compartments filled in repeated samplirle is

“)-[5)]

This result may also be achiq:i;{i& by application of the theorems
of this chapter. The probability that exactly ¢ compartments will

be filled ig im‘ﬁ*(())k N1
Nt (N-pINe*
Henee \ N\ )

é’(ﬁ):}u%tét(o_)ki_ 1 1 k NAA- 0y (N-1)!
NI BE i (V-giNF TN 2 NF gDl (-
~a7 VA4 Ao

N .

&

: Nk
m;ﬁie use the linear difference notation and write
) 3
F=1 +ﬁ,
then ENH0 = (N — 1)k
B\ 1 NAN—1) 1\

* Bz, is defined as e, = ®s4q. Hence

BY Mt = B )k = EYsg 40k =, o (t+N =1~
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Similarly the mean value of (£/N)? in repeated sampling will be

E_I MOk N! 1
"SB(Nz) 2_11 i (Nl NF

7\'2”6 [NV — 1AL+ AW -2(0y + NA(1 + AV H{0)F]

B b TR0

from which it follows that the variance of /N, say o}y is A -

o R N

Erercise. Find the third and fourth moments abo‘@xthe mean

in repeated sampling of the proportion &/N. 3,
D
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CHAPTER XI
MOMENTS OF SAMPLING DISTRIBUTIONS (N

In the previous chapter there has been set out the mathegria’ﬁical
technique whereby the expectation of a random variable, or of
a function of random variables, may be caleulated! Gne of the
main uses to which the statistician puts this teckuigue is for the
caleulation of the theoretical moments of sampling distributions.
Such ealoulations are straightforward and areyeally only exercises
on the use of the theorems already proved, but since they are
of importance we shall consider thetd_hére in some detail. The
connexion between the random vz}-ﬂ&’ble of the probabilist and
the sampling unit of the statistitian is usually made in the
following way. A single u:g1~i1s'.'i‘s randomly drawn from some
population the probability~distribution of which may be com-
pletely known, or may bedhcompletely specified. With this single
unit we associate a razidom variable which has the same prob-
ability distributiqn% the parent population; this single unit will
thus be one observed value of the given random variable. Hence,
if we randomly-draw a sample of units from a given population,
we may afgoclate a random variable with each element of the
sampleinerder of drawing, and to find the mean value in repeated
sampling of a function of the observed values it will only be
necessary to discuss the mathematical expectation of the same

< hinction of the associated random variables. We shall begin by
finding the moments of the sampling distribution of the means of
samples the units of which have been randomly and indepen-
dently drawn from an infinite population or, more precisely,
from a finite population with replacement after drawing. In this
latter ease the population is effectively infinite for provided each
unit is returned after drawing it is not possible to exhaust the
population.
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SamMprING MOMENTS OF THE MEAN:
PorvLaTioNn INFINITE

Agssume that a sample of » units is randomly and independently
drawn from a population the distribution of which is not specified
but the first four moments of which are known to exist. Let these
population moments be g1, fg, g and gy, where the s have their
usual meaning. Associate with the sample units in order of &

drawing » random variables &, s, ..., %,, and let O\

1 2 3
E = — E ;1‘:‘, . s.}
4= .

It is required to find g1 (F), #.{Z), a(®), #4(T).
It has already been shown in the previous chapter, that
{ \
w(E) = €(x) = ‘\ v

and #3(T) = E@— @ Dlajn
from which, if we apply the usu&I' eonventlon of writing g, = o*
we have that

o:(:r:) = o‘Nn

The third and fourt @Gments follow in similar fashion but
require a little IOrSen eration,

) = 6ta~ &@)3——(@&‘ ~;»;)]3

??,3 c‘?z (2, w,wl)3+3e3° E E [(x — p1)? (% —ﬂ1)+

N

\”\; (o0 = 1) (5 — 121)°]
n—2 n-1

FEPESEISEES (wi—ﬂi)(xj—ﬂ;}(wk—#i)].

- gl j=1+1 B=F+1

The sample units, and hence the random variables, are given
independent. The second and third terms therefore vamish and
we have

g(E) = — E (s — ﬂq)?'——

Q-2
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Far p,(z) similarly

(@) = E(F—£ () 4:4[ £ G- |

R R P R R I
(g = py) {2 p1)%]
n—1 n
+68 X X (m—p)? (e —py)? .
i=] J=itl N\
=3 n—1 N

+126 ¥ % E [lae — g PP ey — o) {5 — 1) R\,
i=1§=1i+1 k=j+1 2"\

+ (o= ) Gy = i) (e ) + (= )y — sl — 147
n—3% n—% n—1 n ¢ &/
EZUED YD YRR YD YR CREY A TCIRN ) A (x;—#»i)]-

t=1 j=i+1 k=j+1 t=k+1

Again, because of independence, all the texms except the first and

third vanish and ) — #+3§?3 \)ﬁz

The 8,(%) and §,(%) of the dlstrlbutlon of the means will be

ﬁl@ 8@ _ A

HE  n
and \792 ; =

It is clear therefore that whatever the £, and f, of the parent
populatighprovided they exist), as # increases the Fr(@) and
Fa(®) W‘I} tend to those of the normal population. If the parent
popul‘a ion is known to be normally distributed then £, = 0 and
ﬁ‘, = 3 and therefore so do £,(%) and £,(Z).

N

BAMPLING MOMEXTY OF THE MEAN:
PorvraTion FiwiTE

While the concept of the infinite population presents no
difficulties to the probabilist it is rare for the statistician to find
a population which he could not count if he had sufficient time
and patience. Also it is unusual for the statistician to be able to
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sample with replacement. However, generally it is assumed, and
it is often the case, that the population is large enough, and the
sample small enough, for the sampling moments of the mean to
‘be used assuming the population is infinite. We shall derive the
sampling moments of the mean when the population is finite and
the drawings are made without replacement, and the student may
then judge for himself the degree of approximation involved.
Assume that the population consists of N elements or units,
and that the characteristic 4 we are considering takes values ,

Uy, Ug, ---, Uy IN the population. Let N
oA
1 N 1 ¥ N v
L - . RPTLAY 4
= N{I:luﬂ’ fa Ng§1 (u,— )% A
1 12

N AD
Hy = I IE:] (ug—‘ui)’*, By = ng‘l (ug _..“‘1: o
Suppose that a sample of n units is drawnffom the population
of N units, and associate with each unipof\the sample, in order
of drawing, a random variable. We hitye therefore n random
variables @y, @, ..., %, but they are up-Jonger independent as in
the previous case. We require to:ﬁ:ud
P@E: 1@ k@, paE).
In an example in thepreceding chapter it was shown that
L \“ ol ’ .
.“1(5?)¥ (@) = prs
75 ’_“ } _ _ Ju} N -
Niofw) = £@—E(7))* = f V=i
’t\..
The exp'ma(éi\(;ﬁs for (%) and ,(%) will be the same as in the
inﬁnit’e.)aESe but when we come to take expectations the terms

willite longer vanish becanse of the lack of independence. Thus
@;have that

_ | R
#5(Z) = ELE‘I ACIES

£35S B [l ) (g ) + Bl ) (2 1))
i=1 j=i+1
L6 S N S - ) {xrm)].

i=1 j=it+1 I=+1
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We shall consider the evaluation of the middle term in detail,
and leave the reader to fill in the caleulations for the last term.
It is required to find

& @y — py)? (5 — ).
#; and %; are random variables, and we may make an appeal to
the definition of an expectation and write

i N-1 N
éa__ !2x__J=_____ u_:2u¢_£r+'"\
(@ — p1) (s~ ) -1 ,% 2, l—py e u)‘
(g — pur} (e S ).
'\
The main difficulty of the problem rests in the evaluation of the
sum on the right-hand side. Congider A\ D
N N v
Z (=) 3 (uy—pp
g=1 n=1 O
This product is equal to zero, since tHe second sum is zero.
Hence if we expand the summationg'iwe have
¥ X & 'w'
0= 3 (g~ i N
7=1 ™
N-1 N ':.:: , , ,
T E 2 L) (o — ) + (), — )]
g=1 h=g+1

Ne1 N ~\ .
_ " { ~} , , , ,
V= % @?ﬁﬂ%—ﬂﬂ? (o — 1) + (a0, — 13) (o, — p25)7].

and

It is clear themt:hat if we consider

O ey
togethetith (@~ 1) (z;~ )2
waﬁﬁaﬂ have that
"'\f “ n—1 q
"3 EJI j=§1[éa(%—#i)2 ()= 1) + & ey — ) (v — )]
P Ny In(n—1)

| R iy
Again, by considering the product

N—1 %

N N N
2 i) 2 - T () = 0,
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it may be shown that :

n~2 n—1 o n_ Inin— 1)(n—2)
6 tzl ; AE_]- " }E (@( 3 nu'l) (xj 1“’2) (xf_ﬂ'l) (i\}h_lJ (N 2)

from which it follows that

s Su(n—1) 2a(n—1)(n—2)
Pal®) = I}”_ N—1 TN-1(¥=2)

This simplifies to
. (N—m)(N—2n) )
#3(:1')_?32(1'57—1)(}\7'—2)#3' . :\“}
The calculations for #,(Z) may be earried out along smﬁlle;r lines.
Writing down the expectations it is clear thef\in order to

evaluate the sums it will be necessary to considet the expansions
of N

5 (u,— p1)? 3 (uk—;ei')%"o,
g=t h=1 AV

N N
Zl (ug_#?»]%} = .17.\/2#,%,
g Y

2

N LA
g§1 (ug_ﬂl?f'ig (e — 1) 2 (y— 1) = 0,

=1

\s..’
L& LT
T > (ug—m)] ~o.
2O Lem

The readepéh}ﬁld go through the algebra involved in order to
pet a fac@iﬁy‘ in expansion and enumeration of the products of
sums ofva.rla,bles This algebra is quite straightforward and it is
easy"td show that

\ }

.1 n—1 nin—1
A =??|:nﬂ4—4—?}-—_l)ﬂ4+3- N_l)[Nﬁg__ﬂg]
- -2
+6. 20 B N

'(N—l}(N—2)[ 4

nn=1)(n—2) (n—3) 0y o
e T (L 6#4]],
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whence, collecting terms and rearranging we have finally that

H4(T) :
} 1 Tn-1) 12(n—~1)(n—2)_6(n—1)(n—2)(n—3_))_
= e ”‘4( TNST T =3 N1y (N "2)(F -3
2(3n=1) 6n—1)(n—2) 3n—1)(n-2)(n—3)
+N*“2(7'\f—1 _(N~1)(N—2)+(N~1)(N—2)(N—3))]‘

If N is very large compared with » it is clear that
BTy ==pun 2, O
fatBn-Dud N
w0

ie. (%) and y1,(%) are very nearly the same a5 those obtained for
the case when the population ig infinitge,\J

We shall now go on to a djscussion\jqf ‘the first two sampling
moments of the (standard deviation)®'i.e. we shall find

IRGES

R

&(s%) = éa(?% 21 (xi—i)?»):{{ :ajnd 0% = &2 - £(s?))2,

N

AN
FIirsT two.8amMpriNg MoMENTS oF THE
(STanp ARD DEevraTron)?: Popurnarion
\o/ INFINITE

AN
As hefarg\it will be assumed that we consider a sample of n
units ragrdomly and independently drawn from some population
of “jhi%h" 1t is known that the first four moments, M1 flos fha, tha,
exigt, With each element of the sample we associate a random
msj”g?riable (i =1,2, e ).
\/ In the previous chapter it was shown that

that is to say, the mean value in repeated sampling of the sample
{standard deviation)? is not equal to the population (standard
deviation)2. We shall refer to this fact later. The process of
obtaining the second moment of s* is perhaps a little difficult as
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regards enumeration but the method is the same as those used
previously both in this and the last chapter. We shall expand o2,

n—1 \*
o= B =) = 88— ()
aﬁd carry out the enumeration of &(s%) in three stages.
£ a
wset) =] ( 3 sy
i=1
- S - |

n 2 N
N & Y O
@ ¢{ 5 tee-piy) &

i=1 =i+

=& E (w;—p )t + 28 Z Z (ﬂ?«i\tﬂﬂg (3’5 #1)?
\

N

=m+n(n—1m2 -

() S = a5 3 w—mﬂ

= _2“%5[ X (w— )t m\“
g +\J
L\

+4 E 2 [(% - (o; — o) + (0 — AL A

i=14=i+1 3

+6i2_:1'\]\x2 (x —'#'1) (z;— ;'”‘1}2
N 'ﬂr—ﬂ n—1

K2y XN e -4 @)
\”\ i=1 j=i+1 t=f+1

+ (y — gy} (g — )2 (= o) + (5 — ) (g = o) (= 111)°]
;'Y Y S (ﬂ%‘#i}(ﬂ’f'ﬂi}(x:'"#i)(%—#i):[-

i=1 j=i+1 f=j+1 v=t+1

Because of the independence of the 2’8 we have then

(@ i) = s Dot Bl —1) ]
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@ &(m@— ) £ o)
P [ 1] 2
=2 3 emmr][ B -]
t=1 i=1 :

2 » ¥’ ﬂ_l L f !
=& T @—mP+2 T % (- py)? )
g i=1 i=1 j=i+1

N
n—1 =
28 3 ) =) o) (- )] O
=1 =z AN
n—2 a—1 = \/

22X Z N ) ) (e ) ON
i=1 =21 k=j+1 g

44
= 1) (5= 1) (o — )+ (g — g ) (2, '"ﬂi)z]:l,
whence \\

) o 2"\ &
6(2n—t 3 i nir?) By nin =1

Substituting for these expressjof}’s’i“n the expression for &(s?) we
have N\

P Y P \ LY A AW E)
£ ”(i,\n) “’“*(I U )

which gives us for k&”femembcrmg Ao = prafi},

Qron, _ 14 n—3
:"\.:0-§E=n—§(n—l)2[ﬁ2—n—_d .
N

ESTIMATE OF POPULATION (STANDARD DEvVIATION)?

\\: In the previous chapber it was noted that the sample standard
deviation can only be used in describing something about the
sample and that as soon as it is necessary to estimate the standard
deviation in the population it is desirable to consider not 82, but
a quantity s2 (say), where

1

ew - (L £ @ -zp) = ot

because the mean value in repeated sampling of 2 is equal to o2
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The (standard error)? of s will be, from the immediately preceding

analysis
n—3
0'32 = I:ﬂz :|

It will be noted for both &? and &2 that
{1) when n becomes very large

2
o and 0% both~>‘f;f[ﬂ2— 1].

{2) when the parent population is normal and therefore
ﬁg = 3 we have tha-lt 2 {ug[ n__3 ’\".\

and when in addition = is large D

"\

0% and ol both—>—£—z N4
A
This last expression is often useful when é@;r}ying out & rough
test of significance in one’s head. The éxpressions for £(s;) and
£o{s%) may be caleulated in the same Wiy as we have calculated
o, and the student should try to work these out. It may be
shown, for the parent populaﬂon nt)rm&]ly distributed and for n,
the size of sample, large, that

¢ 12
2y4n2 b AT S
ﬂl(se)%*l, Buls=8+——

'C\ 4
FIB@E‘ Two SaupPLING MOMENTS OF §,:
A PoPULATION INFINITE

For, ‘the student who is not yet accustomed to the ideas of
analysis of variance it may seem a little artificial that we have
treated st and 8% in some detail, but have made no mention of ¢
and s, which, being measures of seale, are collective characters
Which are used in the development of statistical theory from the
very beginning. The reason why we do not treat of s and s, is
not far to seek; the square root sign makes them difficult to
handle mathematically. We shall find here the first fwo moments
of the sampling distribution of s, but we shall do so in a very
approximate way and rely for our justification on the fact that
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the expressions obtained do agree well with numerical sampling
experiments. By definition

I » AL
8g = (?1_—1 £§1 (;— %) ) .
Write & = o+ 3,
' sk
o amreaofis ),

and assume Js, is small by comparison with ¢, which will be gfo
if n, the sample size, is large. ) R\,
¥xpand the right-hand side as a series, and take expeéfations,

st =o1 162 Do) ]
The expectations within the bracket may be gw;éfua,ted directly.
B =0 (O

from previous work, while from above’. v/

) = RREY
from which it follows that . };;: )

m"é%d"sﬁ) = 0.
O ot

Also &(s2 N b'\&?'ﬁ o= - (B3—1) = £(dY).

This is certain{;{tjﬁl&r trae for large » but if » is not large then the

original assumption will not hold good either. Substituting for
these e regsions we have

| :"\;";_{\ 8(s,) = 0'[1 ezl +]
\\; o3, = (s, — E(s,))% = o’ﬂl:lw (1 —%9)2 ﬁ%—l a?
and hence T, =0 J (}5’24_;;1)

When the parent population is normally distributed then 4, = 3
and

o
o, ==

e J(2n)°
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The student must beware of an indiscriminate use of these
sampling moments of s,. Nevertheless, in spite of their mathe-
matical limitations, they are useful if only because the distribution
of s, tends, with » increasing, to be normal more quickly than
does the distribution of 2.

Itis known that if the original population is normally distributed
then (n — 1) s2/o? is distributed as y? with » — I degrees of freedom.
Wo shall discuss the x? distribution as an example in the theory
of characteristic functions but it is useful here as an exercise to
find the first two sampling moments of x?, which we shall da f)
a quite general way, for the case of a grouped frequency distfibu-
tion, Some variation of our previous technique will be npesssary,
and we shall now make use of the concept of the cha{iécteﬁstic
random variable. This concept will be found usefubinall sampling
problems where it is necessary to consider groupg\or strata and
the student should try to make himself familiaiwith its use, We
shall assume that a sample of N observgtipns is randomly and
independently drawn from a population which may be classified
into & groups. Suppose that the chance of an individual being

o\ k
drawn from the ith group is p; fori =1,2,..., %, th&tizxf’s =1

and that the number in th@“saniple actually drawn from the éth
group is n,. Itis obvious"zhat

KN
igi Ty = N, &)= NP#‘
_ \“‘2 '
Write N on; = n;— Nop;.
_ We sha,l.l‘j(}@}i by finding o*{dn,) and p(dn; ény), for
~:.’ i’jzl’ 2,..., k,

AN
afidyfor convenience we shall consider only two groups, the ith
and the jth, throughout. The argument will obviously hold good
for any pair. Associate with each unit of the sample of ¥, in
order of drawing, two series of independent characteristic
random variables, o and £, for Li = 1,2,...,N. The series of
variables o, will have the property that they will take the value 1
when the sample unit falls into the sth group but that they will
be zero otherwise. Similarly the variables §; will take the value 1
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when the sample unit falls in the jth group and be zero otherwise.
It is elear from this definition that

N N
Sog=mny X f=mny
=1 t=1

Using only the variables o, we may find ¢2(én,).
oR(On) = E(Fn;— E(0n,))? = &(8ny)* — (€'(dny))".

From definition _ O
&(dn;) = &(ny)—Np; = 0, O
Ene? = & (mi— Npy? = S~ (Npg*. |V
Again from definition ) “\ 3
N No1. B
o= 5( S o) =6 T ot+2 TN aa |
i=1 =1 RSrt1

{7\
We assumed that the characteristic, x‘@ndom variables were
independent, whence the right- ha.nd i:erm will be the product
of two expectations.

&) = V.p;+0(1—p,) = Pa:s «‘i"{af;%) = &(on) Ele) = pi
and therefore oﬁ‘”(nz W P+ N(N —1)p3
and 9'2{‘3”4) = Np(l—p,).

Similarly for the }o\rrelatlon coefficient, p{dn,dn;). From the
definition of the, cdrrelation coefficient we have

AS
p(aﬁ;_\}ﬁ_) _ S(On:dn,) —E0n) E@dny) _ £(Sn;8ny)
Tons Ton; Tini g ’

since, t& separa,te expectations are each zero. The denominator
ig, eready kmown and it remains to calculate &(dn dn;).

U E(0n,dng) = E(nym;)— Nop,p,.
Using now the two series of variables

N N N-1 N
E{nyny) =é®( § & E /’):) ( > o+ 2 2 (azﬂr““:ﬂ: ]

From definition it is eertain that the first summation must be
zero, i.e,

. E a’lﬁ1=0:
=1



Moments of Sampling Distributions 143

for when & = 1, § = 0 and vice versa. Hence

&lngng) = NN -1)p,p,

Substituting in the exprossion for p(dn;0n;) it is seen that

plon;dn,} = “A/((_I#i—p,}) '

These preliminary caleulations will serve to make the readeh,
familiar with the way in which the concept of the characterlstlc
random variable is used. ¥® may be defined as

ko &nd
= '&§1 N Pi- .
and we must therefore consider £{dn3), & (aﬂ@'nj a.nd £(8nd) if

we are to find the first two sampling momw‘ts of this criterion.
We have already shown that N

7 ~.’
S

9¥¢ 2
AN\

(67?’%) = Jé‘ni :"N’P'x.‘(l '25’1‘.)-
* from which it follows that \ '

) —‘\E (1 _p'a)_k 1,

but the expectatlons\ the higher moments of &n,; and dn; dn,
may cause djﬁiculty '

Ednd) = é”{m —Np,)t = (g, (d;—}?ﬁ)r

,s’\ N N
N _g(z(a; )+a§ E ‘l(a;—p{)‘*(af—pi)z-

:.\:. —
/N

'Bhe\‘(_;ther cross products vanish because of the independence of
the variables. The &{a;—p;)* comes immediately on expansion.

Eloy~p)t = E(of) — dp, E(af) + 6p3 6 (of) — 4P 6 (on) + pf
= p,—4p?+ 6p3 — 3p = py(1 - p;) (1—3p; + 3p3),

and we obtain gimilarly &{og—p;)% Substitution of these values
in the expression for £(dnf) gives |

E(0nt) = Np, (1—p,) (1+3(N - 2)p,(1—py)).
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The &(8nf énf) can be caleulated in a similar way, but it will be
necessary to take care in the enumeration of terms. For the
student who is not sure of himself when dealing with summa-
tion signs it is perhaps better to expand

&(0nf on5) = El(n; — Np;)? (n;— Np;)]
and consider each term separately.

For example, ~
1/ N N
sty = e[ (5 )" (2 5) | O
I=1 =1 '\
N N—-1 N _ ~\ )
~e| Tam S S e O
=1 I=1i=1+1 & ¥
N1 N m\

=1 1=

+2 3 Z [“z“sﬂ“‘“:“:ﬁ:+a?ﬂzﬂ:+“%ﬂqg{]
X.\ g

N—2 N—1 SV
+2.¥ X Z [a;a;ﬂ + oy f7 K00, 72

=1 =741 &S )
+ R BB+ 4 P+ 3 B8]

N1 N R
+4 E 2 (o ffy) aN°
=1 t<111
N—2 N-1
+4 3 3 (%Msﬁa"‘aﬂsﬂzﬁﬁ‘ . ete. (6 terms))

I=1 =141 h=i+1 L%
N-3 N—-2 N-—1
+ p + o e, ... ete, (24 terms :I,
I§1 i1 h=z{41"v=§+l[at%ﬂhﬂv ke vﬁ!ﬁ!"f' G ( )]

whence ‘j\’ .

g(na@% NN = 1) pup;+ NN — 1) (N = 2) p,pi0;+ ;)

+N(N 1) (N -2)(N-3)pipl
Slmﬂarly : ! ’

QO E(iny) = N(N 1) pyp,+ NN — 1)(N — 2) p¥p,,
Enin3) = NN - 1) pyp; + NV 1) (N — 2) p, 3

We have already evaluated &'(n, ;1) and &£(n3), so that on sub-
stitution we have that

E(@nion3) = Npyp, (N —2) (1—py—p;+ 3pp;) + 1.
From the definition of a (standard error)? it follows that
T = E(P =B = S~ (b — 1)
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Substitute for y?
E fng\? E o dnd k1 ko 5n?énd
£ 22:@*’( _7_1) =g( gt 2 : ’).
) £§1 Np; 1',§1 Nepi 5 j=z£}+ 1N, p;

The expectations of both these terms have been evaluated and
it only remains therefore to substitute the values obtained and
to show that

1)_[_"1“ L R

8 __ — _ N ,
0% = 2(k 1)(1 T Eo N \

The algebra involved is not heavy but the student may perhaps )
get into difficulties if he does not resort to the by now fantiliar
trick of getting rid of the double summation sign, e.g.

-1

k ¢
3 (l—gdti—p)

=1 j=it1
2 2 Ok e x\\
and l: X ?a':l = ¥ pi+2 % Z\'L}l@:i"p
i=1 i=1 i=1 %
. N
remembering that S pi=l
: i=1

P

The usual values taken for the ii;lc;fnents of x? are

Ex = kAN %= 2(k-1).
It will he noted that, ’jfaking these values we are neglecting
terms of order 1/M\in‘the expression for crig. Generally -this
approximation is/ot important and the siudent may convince
himself $hat thi:&\is the case by working out some numterical
examples, \\

N
AN Numerical examples
{é’aﬁ:\pare the true value and the approximate values of 0% for
the cages:

(-i-) k = 10, j_\'T = 20, P“ - ._Il.ﬁ for 1: = 1,2’ vers 10'
(ii) k = 10, N = 50, M= Pro = 0.02’ Py = Py = 0-04’
Ps = ps = 0-08, py = py = 014, p5 = Pg = 022

neT I0
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BREFERENCES AND READING

There are many papers both in the journal Biometrike and elsewhers
where the sampling moments of different distributions are devived, We
may mention A. E. R. Church, Biometrika, xviz, p. 79; J. M, lo Roux,
Biometrika, xx111, p. 134; J, Neyman, Riomeirika, XviI, p. 472; J. B. 8.
Haldane, Biometrika, xxx11m, p. 284, but the list is not by any means
exhaustive. The student wishing further exercises on expectations should
consult these and other papers and work through the algebra,. ¢

For examples in the use of the characteristic random variable the
student might consult J. Neyman, J. Amer, Statist, Assoc. xxxnrz,}i.:},ﬂl,
*Contribution to the theory of sampling humen populations 'rand the
appendix to F. N. David, Statist. Res. Mem. 1, p- 694 “Wimiting
distributions eonnected with certain methods of sampling human
populations’, O
\::\\



CHAPTER XII

RANDOM VARTIABLES. INEQUALITIES.
LAWS OF LARGE NUMBERS. LEXIS THEORY

. By application of the elementary theorems regarding the
addition and multiplication of expectations most problems can |,
be solved. It will have been noted that the theorems are quite
general and do not depend for their application on the randdny,
variable following a particular probability law. Following @long
the same lines, and without specifying anything about‘a}, other
than that it is a discontinuous or continuous randofi, Jvariable,

several inequalities have been devised which enablediinits to be set
for the probability of  being less than a given va,lue Most of these
itequalities spring from, or are generated froatm , Markoff’s lemma.

S 3

Margorr’'s LEMMA

It is assumed that a certain racudom variable z may take only
positive or zere values. If @ = g(w) and ¢ is any given number

greater than wnity then 4
P{{E = at® < 1fi%

Let 2 take values in a@endmc order

0<uf;uz£u3< Uy, U< < Uy
AS

and let p,, M.,., P Prsts s Py e the corresponding prob-
abilities thate'takes the glven values. The proof may conveniently
be dividedinto three parts.
1. qti'é‘:;ul
S From the definition of expectation

N N

S@)=a= 3 wp>u X P =Y

i=1 i=1
Since ¢ is an integer greater than unity, if a>w;, then af®
a fortiori >u,, and cannot be less than u,.
I attsqy,

If @t >y then Pz > at¥} = 0, which is certainly less than lft2

1o-2
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LI, y <at® <uy

If a#? lies between u, and u, then it must be possible to find
two values of , say u, and w%,,,, between which at® will lie,
Assume therefore that

U, <ot < U, .

Writing down the expectation of x we have

"\
E@)=a=wp +uspyt...+u,p,+ Upp1Ppirt - T UDN

& Z U1 Pryy oo H Uy Dy > (P g+ Py = at2P{x.3?aiz}.
7S “
It follows that Plazat® < 1/t2, A

ILrusTRATION. « is a binomial variable witl:i}:exliectat-ion
N
equal to np, ' )

Let ¢ = /3. Then Plxz3np} <. O

It will be seen from this that the limit sét@o the probability by
the inequality is not very restrictive, htt/it must be remembered
that the lemma will apply to any raidom variable about which
the only thing known is its mean‘value. If the probability law of
a variable is known then therjei:i's'no need to caleulate the prob-
ability as given by Markoff’s lemma because the exact value for
any required probabilitg can be found.

Finer limits ca; E{é obtained by the use of the Bienaymé-
Tehebycheff inequzhty which makes use of both the mean value
and the standa{rél“error but again since this inequality will be
applicable tolany random variable which has a mean value and
a standard\érror too much cannot be expected of it.

Q -
2\ ) BIENAYWME-TCHEBYCHEFRF INEQUALITY
N\ If x is & random variable of any distribution whatever, then
provided &(w) = a and S(x—a)? = o? exist and £> 1

Plla—a|<io}>1-1/2,

The proof of this inequality follows directly from the Markoff
lemma. '

Write ¥ = {r—a},
Then Ely) = Elx—a)? = o2
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Applying Markoff’s lemma it will be seen that

Plyzot<1jt or Pl{lz—aPzo?}<1fi®
and therefore  1-P{lz—a|zio)>1-1/i%
It is obvious that
P{lz—a| z to}+P{le—a|<to} =1

and the inequality
P{lz—a|<io}>1—1}%

is proved. ‘O
TIrrostraTioN. For illustration let us again conside?\the
binomial variable, z, and further, let & = 3. _

<

£y =np, Sla—s@P=npg_ (D
and Pilz—np| <3npg)} >3- '

The Bienaymé-Tchebycheff inequality 1 &‘dg\naturailly to the
mathematical Law of Large Numbers. "Fhis last is & name given.
to a series of theorems which although differing in their proofs do
not differ radically in their conclusions.

It may be shown for a brqad"cléss of linéar functions,

¥y= .F(a:l; gy vens ),

that the standard erzarof y tends to zero as », the number of
variables z, increases without limit. The simplest case of this will
be when the a’s are-all independent, when the standard error of
each z has the s@fne value, o, and when y = Z. Then the standard
error of y is-q{d/n and it is seen that this tends to zero as n tends
to inﬁni&ﬁut the standard errors of each z need not necessarily
be equal® The same result can be reached by supposing simply
that'sll the z’s are bounded. That is to say that there exists a
%Qr)ﬁéin number 7, such that |« | cannot oxceed m, and $herefore
' the standard error of y cannot exceed m/n.

Also the standard error of a linear function may tend to zero
even if the #’s are not all independent. This will be the case when
each random variable z is correlated with the one which im-
mediately precedes it and the one which immediately follows it,
the others being independent or at least uncorrelated. Such
successions of #’s were considered by Markoff and called chains.
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If the standard error of any function y, of the » random
variables ¥, tonds to zero as » tends to co, then the Law of Large
Numbers will apply to the function, y.

TaBoREM. (Law of Large Numbers.) If y is a function of #
random variables, %, ,, ...,x,, and if

Ey)=a and &y-~Ey)) = o?,

then provided o2->0 as n—>w, for any two positive numbers,
eand ¢, where ¢ and 7 may be as small as desired, it is possible to

find a number n,, such that for n > g (\)
NS ¢

Plly—a|<e>1—g. W >

The inequality of Bienaymé-Tchebycheff applied tooy will give,
for any ¢ greater than unity, AN

Plly—a]<ot}>1— I/ti.\\:

Write 2= x\

and the inequality becomes % >
Plly—a|<odn>1-y.

Now, assuming o2-> 0 as n -, whatever the numbers ¢ and 7,

where ¢ and 4 are as smallas desired, it will be possible to find
a number n, so large thabif » >, then
N

. T <ELf7.
It follows thereférs that
i -al<ei> Plly—a) <oifp>1—q
and thgﬁ}e@uality is proved,

E:f:@?@le. m dice are thrown. If % is the mean of the sum of the
dot§ on their upper faces find

)|
N P{Z-%|<}§>1-40%

Let @, ({ = 1,2, ...,m) be the number of dotg on the upper face
of the ith die. Hence

b3

- I
=~ ¥ z.
mo=

|
-

From first principles it may be shown that
¢la) =% and &F) =13
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Also since the 2’s must be independent ‘
0&{ = % and o=

If m o0 then o;—0.
The probability it is required to calculate therefore ia

P{z-}|<§>1-o

35
12m’

by an application of the Law of Large Numbers. As m increases
this probability will tend to unity. It may be noted that for the
probability to exist m must be greater than 11. N,

TaeorEM. {(Qeneralized Tchebycheff Inequality.) Assume*tha.t
there are # independent random variables x,,%,, ..., ’ac_nd that .

Ew) =1y Elw—a)t = o}, fors'=1,2,.*~;\%al

Then, provided # < n, where ¢ is a number at choice
9,

o<t (55

The proof follows directly along the ]Jnes of the two preceding
theorems.

TrrorREM. (Poisson’s Law of La'rge Numbers.) It is assumed
that the probability for the@uccess of an event varies from trial
to trial. In » successive’ “trials the successive probabilities are
P15 Py« Pp- 1f there Bk successes in n trials then

PSR <1 (S 1%

where ¢ is.aifiimber at choice and £% <n. :
Assum’%hat characteristic random variables %,, %, ..., %, are

attached hone to each trial. The proof of the theorem then follows

fl‘\em an application of the Bienaymé-Tehebycheff inequality.

The above theorems are only a few of the many which could be
quoted and which all express the same conctusion; that, given
a function of n random variables, the difference between the
observed value of the function and its expectation will become
small as % increases provided the standard error of the function
tends to zero. Mathematically the conelusions cannot be queried,
but the question may be raised as to whether they are of any
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practical importance. It is held by some that these laws can be
made to justify a given definition of probability but it is doubtful
If this can be so. In no practical problem can the conditions
under which the material is collected be kept constant and » can
never tend to infinity. Possibly the most that can be drawn from
the theorems is the reminder that the larger the sample under
consideration, all other things being equal, the smaller will be
the difference between the sample estimate and its expected\
value. We note, however, that there will always be a difference
in practice. AN

Lexis TERoRY

We now leave the theorems regarding the Faws of Large
Numbers and turn to the further applications’ of the simple
theorems on expectations. It will be suppeged that there is a
number of independent trials, N, which #ay be divided into
% sets of 3 so that N =ns. NV '

If the binomial theorem on probabilities is applicable to these
observations then it is necesdary for the probability to be
constant throughout the set of & trials and therefore throughout
each of the » sets of 3. Sudhha set of N trials is sometimes spoken
of as a Bernoulli series, #fthe probability is not constant through-
out the st of N ohseryations then two ways in which it may vary
will be constdered; Suppose first that the probability varies from
trial to trial withih a set of s observations but that the variation
is the same within each set. That is to say, if the probahility for
the fifths¥ent in the first set is 25, then this will be the probability
for thedifth event in each set. This type of variation is known as
Poisson.* Secondly, suppose that the probability is the same

(Within a set of ¢ observations but varies from set to seb; the
Variation is then known as Lexis. The theory, commonly called
Lexis theory, which we shall now develop, deals with the separa-
tion of these three types of variation.

Lexis theory is commonly applied to birth and death rates and
it is mot inappropriate therefore to illustrate the difference
between these three types of variation in this way. The prob-
ability of death at a given age among (say) university students

-#* This should not be confused with Poisson’s limit to the hinomial.
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may be assumed to be constant and it is unlikely that the
estimate of probability would vary to any marked extent if a
large number of students were arbitrarily divided into different
gets. We should be justified in this case in assuming that the
binomial (or Bernoulli} series would be valid.

Next consider a town divided into different homogeneous
districts. We might assume that the probability of death ata given
age would be the same for each district but that the probability
of death would be different for different age-groups. This would
be an example of Poisson variation. O\

Finally we might consider n different age groups in a sifigle ’
district. The probability of death at a given age may be assumed
constant for s persons of the same age, but it will be djﬁerent for
different age groups. This would be Lexis variation’:’:,\

Consider therefore N random independent\variables, «,
divided into n sets of s in the following wayg NG

- l &‘ . 2 .
11, Tymy e Ly A 0wy = &y
By=1
":’:.' 1
x x ey Bg N — B gy =Ty,
21 22 ] ’?3:’ 3 i 2§ @
PA\Y :
¢ \J 1 s N
Tin  Tap Semr Egg g_z 2y = %
q =1
D\ : :
73 1a
BS, Tame s Tpg gjzl Tpj == Tpye

N
If z;; ig'phe jth variable in the ith set, let
\m‘ J Elay) = agy & (@i — ) = T
E(z;) = d; and &EF—) =0}
fori=12..,nandj=12..,86
. We have shown previously that
o & wmmr) = " Fotr I o

~where @, is the expectation of #; and o; its standard error.
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Applying this theorem to the present variables we have

s _ — 1 g F _
6’( > (x'ﬁj_xi)g) == 2oL+ X (g~ ;)"
i=1 § j=1 i=1
and summing for sach seb

‘0@(% % (xi}_ii)z) =8—;} % i g%+ % % (@ —d;)%

i=1 §=1 i=1 j=1 i=1 j=1 O
Again applying the theorsm we have O\
n n—1 ® L — 's:\
S @-97) =" S ore 3 a-a
i=1 L= | i=1 W\, 3

where % is the mean of all the observations and. @ié\iés expectation.
We now proceed to establish a relation betwoer o2 and o2,

s e 1,08 LW
O’% _ g{ﬁ?ﬁ _ g(x?:))z — ;‘3 g( .EI (CUﬁT\@%j:)ﬁ
=1 AN\

lex ('" F=o 3o
= — & ’ﬂ:..—a._.. = — EO“-,
22 g j i 823,:1_ +f

TN

The two fundamental equaﬁoﬁs can be combined by means of
this relationship to give \a"single equation; eliminating 0% and o,

1 2@ _ n o8
8—_—(8— 1) [éa(i%_l\':l (xﬁ—xi)‘z) _ ,;§1 j%ll (aﬁ —-ai){l

P\ % " £ o (5 e W (=g

> =n—4—z[°(i§ﬁ“’i"“’))‘EJ“*‘“)]'

s
It remhms to make an approximation, and replace expecta-
tiong\by observed values. This can only be an approximation

bttt brovided » and s are both large it will probably be adequate.

SJIn any case, since we are aiming at applying the theorem to
observations, it will be the best that can be done,

We now distinguish between thres types of variation.
I. Bernoulli
For the Bernoulh law of variation to hold
dy=u;=a fori=1,2,...,n, and i=12 ..s8

that is the expectations of the random variables in each set are _
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equal to one another and are also equal to the expectations of
the random variables in any other set. It follows that
1 n
—_— Ty —E) = —— é" T,—% ”).
o€l 3 B em) - (3 mm)
Hence if calculations are made on # setg of ¢ and it is shown that

A o
e }‘1 P2 1(5% Z;) 3 42‘ (& —~7)%
then we should be justified in assuming the Bernoulli (or bi-
nomial) law of variation. When this equation holds it is said thab
there is normal dispersion. ) O

27
| %

II. Poisson N
\‘

For the Poisson law of variation to hold

a‘: =+ a’l:j but Es',i = a;, \ N

whence ’ s\‘ .
]) I: § Z: (xij_ @,) ) §1 j§1 (a’u _'ai) :I

3

St 3 e
and therefore Q

1 £ 3 { ‘\ n é” ( % x )
8(“: —1) ( § \g‘ g )> =1
If from the obsegvations 1t is found that
n B o_
»>— z,—z)?

\8(.5 —1) ;2‘1 321 (y—3)" n—1 -i§1( !
then 113 Wou[d be justifiable to agsume Poisson variation and we
shosuhd say that there was sub-normal dispersion.

}YI Lexis

For the Lexis law of variation to hold
ay=a; but T+d.
A gimilar reasoning to the above will give that

e K A )}a—é’( 5 @27

=i j=1
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and if this was found to be true when expectations are replaced
by observed values the dispersion would be said to be super-
normal.

It is customary to calculate what is known as the Lexis Ratio
on probabilities. This ratio may be found simply by assuming that
each of the #’s of the original set-up are characteristic random
variable, capable therefore of taking the values 0 or 1 only. Let

the probability that a,; takes the value 1 be p,;. We begin with\
the equation

N

28N

E8 _ _ n_l n 8 " _ _ '\\“
f(z(@—ww)= ;3 Noh+ 3 @-apl
i=1 8" ¢ =1 i=1

X

which follows directly from the immediately precgiihg analysis.
(‘?(xij) = Qi = Pyy» N\
Let @) =G, =p, and EF)ET = p,
K&

from which it follows that \®
ey —ay) =0} = Pif“P%f’,}f%(ﬁi-a@Jg = 0} = p;—pi
Substitution in the equation gi%ss
fg’(%(‘ ‘)2) nalS 2y4 S 2
T~ = p— & L — .
; &4 1 WQS?‘ 21 j§1 (_’pe,j ptj)+i%1 (pm p)

fr=

Now ,_g}l}ﬁw =P = 21 P spi
O i=
P \ } bl L}
and therefqpq..’ 21 =3 (g — D)%+ spt.
'S = =1

. . \" n ki d

Similafly D=3 (p—p)P+npt
N = i=1

N\ .
“Again substituting, in turn, in the equation we have

LN (n—1)p(l — 12 s '
g(igl(xi—x)a)= f( 1:3)_’»?,%82 Py

ns—n+1 *#
o I e
Finally, if we write -

g( él (Ef_a)z) = (n—1)0*
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the equation becomes

2=}i(._1__33}__1_ v 3 JEPRY. Min P
a & 82 1;§1 j§1 (pﬁ jl,,) +ﬂ8(ﬂ—1) 1:§1 (Pi "p) '

If the probability is constant throughout the trials, ag in the case
of binomial probabilities, then we have for the {standard error)?
of the probability o2 = pgls '

which is familiar. For Poisson ¢? will be less than pg/s while for
Lexis it will be greater. .

If ¢ is the actual standard error estimated from the obserya-
tions and if o5 = 4/(pg/s) is the standard error of the probability
assuming it is constant from trial to trial then the Lexis Ratio
L is defined as L=o'log A

It will be scen that i I is unity then the proba:l:}ﬂ.\ity may be
assumed to be constant throughout the observabions. If L<1
it may be assumed that the probability is F&%‘iﬂg within the seb
but varies in the same way from set to seteIf L > 1 the probability
may be assumed constant within the sebbut variable from set to
set. We have at present no means of judging the significance of
the departure of L from unity, aléhough the student will realize
at a later stage that the x? digtribution may be used.

Example. Rietz gives fhe following example of the death
rates of white infants ufider one year of age in the U.S.A.

N

State Y Births Deaths per 1000
California’ 50,707 70
Indiana 87,9156 78
Hearitmeky 53,668 77
&ﬂl’ﬂ.ﬁsut&. 51,452 66
{\X. Carolina 51,832 74
wy ¥ Wisconain 54,472 TR
\ . Mean 53,339 74

&he numbers of births in each state are approximately equal,
and the applieation of Lexis theory would seem to be appropriate.
The average number may be taken equal to ¢, the supposed
number in each set, and the standard error assuming the
probability constant will be

0-074 % 0-926
= YTl =1-13 er thous&nd)-
s «/ ( 53,535 ) (® |
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The standard error estimated from the observations is 5-14, and

the Lexis Ratio is therefore
514
=T =

This is considerably different from unity and we may draw the
inference that it is likely that the infant mortality rate is
significantly different from State to State. )

Exercise. The death rate in Germany per 1000 inhabitantsds®
given for the years 1877-86 in the table below. Assume that
45,000,000 was the size of the population of Germany withir‘the
period 1877-86 and study the dispersion within ,,itHé table,
(B.Se. London 1938.) a3

4-5,

_ (Y
Yeoar 1877 1878 | 1879 1880 | 1881 1882 | 1888 1844 | 1885 | 1886
Desth-tate | 280 | 27-8 212 ] 275 | 269 272 N213 | 274 | 272 | 276
; 4

. . A\ .
Ezxercise. The proportions of maleghorn in Vienna during the
years 1908 and 1909 are given helow?

Proportiongf male births

Month...| Jan, Feb.s |  Mar. ‘ Apr. May June

0-513 0-514

1908 | 0522 | 0813 | 0514 | 0-525
0-514 | 0509

i909 0-514 \\0-509 0-50¢ 0510

(Month...| Julye™ ‘Aug‘ Sept. Ot ] Nav. Dec.

1908 oty 0-521 0-511 0-52-6_ 0-512 G514
1909 ’.\0:513 0-528 0-518 0-513 0518 0-503

o’
Assun‘ye}'thﬁt the number of births in Vienna was 3903 for each
of these 24 months and study the digpersion within the table.

L{B'B¢. London 1938.) '

) There is one aspect of the analysis of this type of variation
which might be mentioned. It will be convenient to refer back
to the original scheme for N random independent variables, the
fundame_ntal equation for which was shown to be

8_(5}-1) [éa(éjl i

=256 2 @=ap) - 3 (a,;—a)ﬁ]

n-—1 e | =1

S o5 3 % 0]

i=14=1
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If the «’s are regarded as units which have heen randomly and
independently drawn from the same population then

and L (% i (24— %) )Z —f—-é”(% {51:"5)2)

s{s—1)  \iZ1 45

1
o (B A ) = g mem)
Since the N units are assumed homogeneous it will be cleaf that
each side of this equation represents an estimate of, he total
variance in the population. If we write V for this tqt&l variance,
then it will be recognized that without d.lﬂdmg“§he material
into sets

N
2\

A\
o@z S (@ <P

ns—1 i=1 =1

Vo

P
A

and that this ¥V will also be equal to elther suie of the last equation.
It follows therefors that if the materlal is homogeneous the fol-
lowing estimates of variance w’ﬂi 2l have the same expectation
(replacing observed values i'or ‘expectations in the equation),

k(3

- S (7w
ns—li 1523\( _-x}s V;”__n—-lfgltx" 7

T o ¢ 1} g n £ .. _
V: — NG H AE —_— L — 2_
R n(s;\l iLI jEl(xw ‘i) Vi.ﬂ g§—] jﬁzll(xj x)
’\‘
: A1
I';;% Z Z {334,5—935)

"’,S( )J‘ 1i=1

}'-*KQW V measures the variation between the arithmetic means of
\bhe sets, and ¥V, the total variation within the sets. Tt follows that
if the quantity VgV, is calculated on actual material we should

" obtain some idea of the variation between sets as opposed to the

variation within sets. An exact test of significance is available
for this, if the further assumption is made that the random
variables are normally distributed.
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REFERENCES AND READING

For further reading and exercises on the inequalities and the laws of
large numbers the reader cannot do better than consult J. V. Cspensky,
Introduction to Mathematical Probability, where these subjocts are treated
~ in some detail,

Lexia theory is developed fully in F. L. Coolidge, Inéroduction fo
Mathematical Probability.

From the statistical point of view the clearest exposition of Lexis theory
will be found in the writings of H. L. Rietz and we may retfe{jshe
student to Chapter v1 of his book, Mathematical Statistics. QA

O
l":"'
X

L ¥4

.\'\,

N

Ko
O

&
o
©
e"‘:“’}
PN
" »
y :\M/
Y
N/

O



CHAPTER XTI

SIMPLE ESTIMATION. MARKOFF THEOREM
ON LEAST SQUARES.

Much of modern statistical technique is directed towards
drawing valid inferences from a sample about the population
from which that sample was drawn. In the early days of the
subject the samples drawn were so large that the co]lectwe
characters, such as the mean and standard deviation, of- .t,he
sample could justly be inferred to be adequate estimates\of'the
collective characters in the population. With the exp‘loﬁaatlon
of small samples it was recognized that the Ba,mpfq‘collectwe
characters need not necessarily be the best estimates of the
population collective characters, and it becanke“\necessary to lay
down cortain rules which it is considered g dellective character
caleulated from the sample must obey fnerder to be considered
& true estimate of a collective charagter'in the population.

Possibly no branch of staﬁstlcal.techmque has been the subject
of more controversy than the theOry of estimation. We do not
propose to enter into the detalls of this controversy and shall
restrict ourselves to a sta,ﬁ&ment of first principles.* These we
shall formalize in th ﬂ;ﬂowmg way. It will be assumed that
there is a collectivencharacter 8, of a population 7, which it
is desired to estimate. n drawings are made randomly and
mdependmtly'\tpom 7 resulting in & number of observations
L :'\"

Drrivetion. A function F(z,, @y, ..., %,) isanunbiased estimate
of 4 if\.whcxtever the properties of the population 7,

O~ E[F (21,2, ..., B, )] =0-

As an examplo of an unbiased estimato it will be remembered
that the expectation of the sample mean, that is the mean value
of the means in repeated sampling, is equal to the population
mean.

* Tdo not wish to be dogmatic in any way and am prepared to admib
that anyone may ]g,y down any prmclples he chooses.

LpT 11

Q"
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An example of a hiased estimate is found in

é"(l f} (#; —x)) n-1 o2,

N1 n

The mean value of the sample variance in repeated sampling is
not equal o the population variance. Thus the sample variance
used as an estimate of the population variance will tend to
underestimate if, the bias in this case being — o?/n.

In general there will be & large number of functions F whidh

will satisfy the relationship O\
g(F} ;.\ ~
and a further rule is necessary in order to choose he‘oween them.
DermvrTioN. A function F(x,, @, ..., @,) is the {hgst’ unbiased

estimate of # if, whatever the properties of th&population, , it
satisfies the relation E(F)=0 ; \\

and &(F —&§)? is a minimum,

Hxample. The best linear unhbiased! esﬁlma,te of the mean of the
population, #, given a sample Qf %' individuals randomly and
independently drawn from 738 the sample mean. Let the
population mean be £, and to the # sample values attach random

variables A
w& Ty, ey Ty
We shall consider a\@ear function of these «’s, say
F = Ay Xy + Xyt ...+ %,

and find the eqndjtlons that the a’s must satisfy in order that F
shall be a-hést linear unbiased estimate of E.

oond”mon 1. &(F)=4.

O am-e z aga; = z 0;6;) = £ 3, a;=¢,
\/ =1 i=1
and it follows that E} a; = 1.
i=1

Condition II. S{F -6y is a minimum subject to &(F)=4.
EF -0 =0t 3 a2,
i1

where o is the population standard deviation.
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n
It is necessary for o* 3, af to be a minimum, subject to the

i=1
n
restriction that 3 @, = 1, and we now find the a’s to satisfy
i=1
these two conditiona.

Let o be Lagrange’s undetermined multiplier and construct
the function

n n
=0} a2—2x 3 a,
i=1 i=1 )
) \
o =20%,—20=0 and a=o% fori=12..,n .
aa-i- 2 AN
7 N
Summing for all values of a,, it is scen that no = ¢® and therefore
that . "G
a;=1/n fort=12..,% \\
This is true for any value of 7 and the besb linear unbiased
estimate of the population mean will be . \J
R

xi =:£”.. \

bz

1
F==
g

1 A
L

Similarly, although the procq&ﬁ}izi’ volves somewhat 'lengthy

;} (%;~%)® is the best
-1

algebra, it may be shown ’t]ﬁ;a,t )

quadratic unbiased estistji}@te of o2 )

Example. 1t is givén\tha,t &y, &y, %5 are three random variables
and that O

EV=E, Sy =E£-2 &)= £+L

Elry— E @SB 4, =B = 1, E@y—Elm))? = 001
}‘urthe?,’x\ifé independent of x, and 3, but a, and z, are correlated
and fave a correlation coefficient equal to —0-25. Deduce a
fb@-‘jlﬁl& for the best linear unbiased estimate of £ and caloulate
“itg/standard error.

Let F be a linear function

F = a,%,+ 0y %5+ Qa5+ 0y

We shall deduce the values of the a’s necessary to fulfil the
given conditions. First

E(F)=f=a,8(x,) +a, Ely) +as&(z5) + g

I1-2
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whence on substituting the given values for the expectations we
find two relations,

aytaytag=1, —2a,+a,+a,=0,
Next

EF I = (e, — S + 03— ()P
+ a3 (xy— E(x,3))* + 2a,a,4 E(xy— E(,)) (25— &),

The other cross-products vanish because #, is given independent
of 2, and #,. Hence

: O\

E(F — E(F)) = 030 + 3o+ a3of + 20,0y pag Ty T

- Writing a; = 1—(ay+@,), and differentiating p@rﬁiajlly with
respect to @, and o, we obtain, after substitutiényof the given

values, o, 0033, a,=0965 and @ L0002,
and from the second relation of the o's ’t‘}:‘zéréfore that
0, = —0-894"
o318 found to be 0-0103 and the ber:st: linear unbiased estimate of
£is F = 0-0022, + 0-9,3}9}35'2; 0-965, — 0899,

It is interesting to note, how the standard error of a given x
affects the size of the(eoefficient of » as determined by this
method. x, has a vegy ‘much smaller standard error than either
¥, or &y, and conse}uently that variable plays by far the largest
part in determining F.
This estipn@ﬁe F is one which would not be easy to determine
@ priori,Qn/intuitive grounds. If no attention is paid to the
standaid@rrors of the @’s it might have seemed natural to take
:'\:"“ . a1=%=532@4=%—
\'\If'the #’s had been so chosen, then
CF) =38 + gtz 1) = JE+E-24E+1+1) = £
and F would be an unbiased estimate of £, Suppose we now
examine its (standard error)?,
0% = O(F — E(F))? = §{(03+ 03+ 03+ 2pyy0,07) = 0-556.

The standard error of this unbiased estimate iz therefore some
seven fimes greater than that estimate which we defined as the
‘beat .



Markoff Theorem on Least Squares 165

The general theory of estimation covers the estimation of any
collective charaeter in a population, 7, from the evidence of the
sample. This is, however, rather a wide field and we shall there-
fore consider further only the estimation of best linear unbiased
estimates from observations which are randomly and inde-
pendently drawn from a given population or series of populations.
That is to say we shall consider only the case where

Ty, By vrey )

is a linear funetion of the &’s, and where the 2’s themselves may
be considered as random independent variabies. Functig::ﬁs of
this type are easily determined by an application of a generali-
zation of the theorem on least squares usually atéributed to.
Markoff. The theorem will be stated for s parapteters, but
because the proof is rather long and has already.been set out fully
elsewhere, we shall prove it for the case of t3wq parameters only.
This last was the case considered by Man{:qﬁ'.'

GENXERALIZED MARXOFE)THEOREM ON
LEasT SQUARES

Consider »n populations ﬁl,ﬂg’; Mer T, oons My, Out of each popu-
lation an individual is randomnly drawn and some given character
measured. Suppose that en the individual drawn from the ith
Population, 77, the gucasured character is @; (i = 1,2,...,n). It
is required to estima\,t:e #, where 8 is some collective character of
the n populations™,.

If i) o, "\, x,, are independent,

(i) the efpectation of each z; (¢ = 1,2, ...,n) is known to be
a linealyﬁr’ietion of & € % unknown parameters, p; (1=12,...,9),
but I;ti’own coefficients, o, 1.6

y \ J E(x;) = @y Py FiaPet oo F G o .

(iii) out of the » equations, &(z;) (@ = 1,2, ..., %), it is possible
‘to select at least one system of s equations which is soluble with
respect to the p’s, that is if at least one of the determinants of the

sth order of the matrix M is different from zero, where
M=|a, Gn ta - % |

gy gz o3

Ap1 Oz Taz - Lng
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(iv) the standard error o; of x; is known to satisfy the relation

where o may be unknown but the P’s must be known positive
constants,
then it may be shown that

(1) the best unbiased estimate of any linear function of ths

P G = bypr+bapy+ ... +6,25,

N

e Y
where the b’y are known, is obtained by substituting inthe
expression for & instead of p;{j = 1,2, ...,s), the vgl};‘eé"’

g!; (j = l:! 2: ...,8), '»«;\'{:

obtained by minimizing the sum of squares
L s xi\\':
8= .;1 (@i — g — 2fa e @99, P
with regard to the ¢’s eonsidergéi’"ﬁs independent variables,
That is to say the best lincarqinbiased estimate of & will be

F = bygfFbygl+ ... +b,g%.

(2} the estimate oi:‘tj;:e (standard error)? of F is given by the
expression \\ 8. » oA
0

2
. =
n—38 i1 B

2

where 8, 13\1:}1:3 ‘minimum value of 9, i.e.
o "
O Bo= 3 (w-anft-aps—...—ay gl B

N,
N

\a,ﬁd)\i is the coefficient of x; in
A P o= by +byq8t ... +byql.

Stated fully in this way the Markoff theorem might appear
cumbersome to use. Actually it is not and it will be found to be

of great practical utility. The proof of the theorem for the case
of two parameters is relatively easy.
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Proor oF MArRRoFF THEOREM FOBR Two
PARAMETERS

# is required to be a linear function of two parameters, say
generally 0 = by -+by py + bypy,
but since the &’s are assummed known we may write
G = bipy+byp, _
by suitable modification of the p's. It is required to show fizst aby’

N
all that — blgo+ bggg ; \J
is the best linear unbiased estimate of 8, where thes 99 s dre as
defined above. Let ~\
n
=3 A \
BN N
Then ,,\ o

E(F) = gEAxa Ehf(wi)

‘ X

= _;1 Ai(ﬂixjfiq; G =bypy+byps = 0.

A regtriction on the A’s W:L‘H he therefore that
\}\ o/
b1 =) E Ai@ix by = E Ay

\ </

The fundamem} sum of squares, 8, i8

# . id

\ 8 = E (2 ‘“%191—'“5292) F.
{Big nécessa.ry t0 minimize this with respeet to the ¢’s in order to

ain ¢ and 43.
Differentiating § partially with respect t0 44 and g, we obtain
the equations '
‘Z Ny A E a B +q" Z U0

f=1

L i

k1
Y, B =91 2 “ﬂ“’wﬂ‘*‘qgizl ada by
i=1 i=1 =
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whence n " L n
2
21 Ay @ '21 ity By — ‘Elau;z F, ‘21 @y %
= = i=

0 _ i=
41 = Py ) 7 )
a 2
(2 “n%zpf) - Yay B Y ahF
i=1 i=1 i=1
and " L T 1
a u
U0, B Y anr, B— Yol B Y ape, B
g8 = i=1 i=1 i=1 i=1
0 —

E) ] E k) b
a 2
(E aﬂaﬂf}) — Xy P X ah F ~
i=1 i=1 i=1

We have now to show from a consideration of the A’s thaby,
F = b,%+5y0% O

where ¢¢ and g have the same values as above, .8
We may do this in the following way. Singé the x’s are in-

dependent n )\é /
E(F—&(F) =0} = T o257,
11=,1.\ 1‘5

S

In order that F shall be a best lineax; ﬁl%ia,sed estimate of 6, 0%
must be a minimum, subject to ghe restrictions found above,
which were N

n o “ $ n
b= A i by = X Ay
=1 XN i=1
ot is congtant and it is‘sgf';ﬁcient therefore to construet a function

_

Y
5
{151 Ii

4 n "
=20 X Aty — 20y X A%,
) i=1 i=1
where «, fmﬂ‘ 552 are Lagrange’s undetermined multipliers.
Di.ﬂ‘ereni;i@hfg partially with respect to A;, equating to zero and
solvingfor'A,, we have, after eliminating A, from the restrictions,
the gquations

/A0S N . ‘._": ®

~\J by=o ¥ ah ta, 3 aganB,
9 i=1 i=1

ki3 ki1
by = oy '21 antli+oy 3 ady B
i= i=1

Solving for o and a,, substituting back in the equation for A;,
and finally putting the value for A; in the expression

F=3 Az,
i1
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we find that

T n n i

3 Gy by E %y Fy— Z a3 By E N

i=1
F=b&

3
(Z iy dga ) Z ailPﬁ E al, By

"
2 “;1‘1{235 Z a2 B — 21 a3 Psizl @2 B
b, =L = -

(% @i Gyg Pa) - Z o B _Z o F;

p \‘\’
The multipliers of the b’s will be recognized as the quantlﬁes
which we have shown to be equal to ¢J and ¢3. It fo]low‘s ‘that

F =b190+b,0 .m,'\‘

and the first part of the theorem is proved.
It remains to show that 4

% = estimate of 0% = e

From first pnnmples we have showrh that
Py .Q e Aﬁ
(i) N F=r X

and it will be sufﬁcier&{hérefore to show that

N (n—2)0® = E(S).
8, is defined as )\ \

T
x\S = 3= —aﬂq?—‘aﬂgg)2ﬂ°
i=1

.“\‘
This m.;ty £ learranged as

~“‘ E ((;— @41 0y — B2 Pa) — Ban (@3 —21) ) — ttga{q2 -2

Expandmg the right-hand side, and taking expectations on both
sides, while remembering that

&gl =p, FlgD) =
-8 straightforward but lengthy algebraic process reduces to
&(8,) = no?—ot—0? = (n—2)7*

and the second part of the theorem is proved.
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APPLICATION OF MAREOFF THEOREM TO
Lingsr REGRESSION

A random variable y is known to be correlated with another
variable x and the regression of ¥ on x may he assumed tc be
linear. It may farther be assumed that the standard error of ¢
for a given x is constant, and does not depend on the value of z.
Values of z, » in humber, are selocted system&tically beforehand,
and the value of y taken at any of these «'s is assumed tg be
independent of the value of ¥ taken at any other of the 2/sl )y

In this case the 4’s take the place of the 2’s of the theorém! The
conditions of the theorem are satisfied and it is reqtured to find
the best linear unbiased estimate of

f=Y(X)=p,+p, X,

where p, and p, are unknown parameters aﬁ&\X is the population
mean, O

The statement that the regressmn of y on x is [inear is
equivalent to writing

,
&°

&ly,) =p1+1?§5¢' i=12,...,n
Referring hack to the Rfoof of the theorem and noting that

B=1,b =1 b,=X d; =1, az = ;, and that y, 1sthex,;0f
the theorem it Wﬂl \9 meen that

'n‘ n;\ n T ki3
2w x Y, — E%E.ﬁ 20 Ey 2 Yy 2 0y
F = i=1{ /=1 i=1 X i=l  i=1 i=1
- \ N7 » 2 L) Y 9 ™ L]
R PR E (o) -3
R i=1 i=1 i=1 i=1

or} ¥ 7,9,.9 »» and 7, have their usual meanings, we may write
— 8, —
F=g+r, (X -7),
sx
which is the familiar formula for the regression of  on . The
(standard error)? of ¥ may be obtained in the same way.
Sy & A

2 _
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Substituting for ¢} and ¢3 in §; it may be shown that

Sy =nsi(l—r2)

% 1 . ( 8 __m—)z
2 _
and i_z:l A= | 1+ 2 |,
2(1-:-*'5‘,)| (Xuci)zl
2 _ ¥ XY
whence i = —n 3 1+ 3:22 .

Tt has been stated that the z’s are at choice. In order therefore
to make z% as small as possible two courses are open: first, the
mean of the sample chosen may be made exactly equal to X, afy,
secondly, s2 may be made as large as possible. The first course is
not often practicable. If all the z’s are chosenin a clusf;eg‘a\bout
X, thon, while X — % will be small (it will rarely be possiblotomake
it exactly zero) so also will s, and the resultingxatio may be
large. It is possible, however, to carry out the reeond course by
choosing pairs of values at the same distapee-{approximately)
on either side of X but as far away as pogsible. In this way = will
be close to X but s will be large and\the ratio (X —&)/s, will

therefore be small. RN :
It should be noted that no aggun ption whatever of normality
has been made, _ N\ '
~

+8 3
SIMPLIFICATION OF THE CALCTLATIONS BY
MEANS OF DETERMINANTS

For the cagé of two parameters the algebra involved in the
application-0f Markof’s theorem is not heavy, but it rapidly
becomes%é*v%hen the number of parameters increases. Since it
is dﬁi’;il‘é:d o discuss applications of the theorem for the case of
thrésyor more parameters the solutions of the equations in the
“%omm of determinants are set out below. These determinants
reduce the application of the theorem to an arithmetical process.
The reader may check the truth of the statements from the
proof of the theorem for two parameters.

We rofer to the notation given in the statement of the
generalization of the Markoff theorem.

It

n F .
Hl] = E RxEQ H’j = Z P&xiaﬁ fOI‘j = 1,2,....,6',
=1 i=1

Q!
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n
and Gup= Y Rayag forj=1,2,..,8,and k=1,2,..,s,
i=1

then F=—AyA,
where
A= 0 by by ... b, |landA=| G, G, ... G|
H Gy Gy ... Gy Gn G - Gy
Hy Gy Gy ... Oy : : P
ST : G, Gy ... G
B, Gy G . G &
AA O
Also #%:_m’ ”<,.’}‘:
where A is as already defined, and Aj and A, are\ o
Ay=|H, H H .. &
H Gy Gy \s 1s
Hy, G4 Ggg,j‘:. o
H, GSJ\Gz e Gy |
and Ay=]0 By by ... b,
BNy Gy Gy |
’\{:‘52 Gy Gap oo Gy |
2OT e, 6y G, .. G
x\“

\é}PLIOATIOI\l O0F MARKOFF THEOREM TO
Partiar BEaRESSION

We may apply Markoff’s theorem to deduce formulae for the
_estimatos and the variances of the estimates of

(i) a partial regression coefficient in an equation with two
independent variables, e.g. z = 4 4 Ba + Oy,

(i) the ordinate z of the regression plane corresponding to
x=£ and ¥ = 9.
It is necessary to begin by deciding in Markoff terminology what
1t is that it is desired to estimate,

If the equation z2=A+ Bz Oy
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is considered then it would appear that for the two different
cases

(iy § = 4 or Bor C, {iiy 0 = A +BE+Cy.
It will be necessary to discuss (if) only because (i) will be solved
automatically in the process of the solution for (ii). All the
conditions of the Markoff theorem can be made to be satisfied
with the exception of the restriction

o} = 0¥,
No indication is given in the statement of the problem as to the
nature of o2, and therefore of F;, and we must needs perfox:ée
put P, =1 for all ¢. In so doing we shall not invaliddts ‘the
unbiasedness of the estimate but we can no longer spea:k of it as
fhe ‘best’ estimate, If O
6=A+BL+ 0y,
then, in the terminology of the theorem, by'= =1, by = £, by =

We have now to consider the expectatlomof 2.
We imagine that we have n sets of\gbservations =, %; %

&(z;) = A—i—Ba:f-l-Cyi. forz_l 2,.

All the quantities necessary, o ‘evaluate the determinants of
the previous section are a,xraﬂa.ble

H=32 ) H-7 H= 3

- 22 T =% " — Xy = By

Q ié:l i Ifli\i=1zl 2 1:;1 g &4 3 ) Y%
¢ n

Gy = n, \Gzz = E %, (s = ; Y

G —\Z\ﬂ:i: Gy = Z T Yy Ga = Z ¥
The determ_mants for F Wﬂl be

O Ag=| 0 1§ 7

22; ] Xz, 2
Seox, Say LXMW
ey, Sy oy I
and A=| n Xz, X4
Sa, e Bmls
Ty, Doy Ey% .
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The summation in each ease being understood to oxtend from
i =1toi=n. Replace these variables by a new set of variables
X, Y, and Z,, such that

Xy=2;~% Y=y~ Z,=z2-%
and denote the standard deviations of X, ¥, and % hy

"

1
=— ¥ X% 8% == ¥ 8 =- 3z
7 E n £§1 * * T w

'™\
The determinants become, writing £’ for £z, and %’ for y ~p,

b= 0 1 g S
0 " 0 0 >
nrxzS8x8; 0 nS% nry yj.Sf_Y S »
nryzSy Sz 0 mrxp S, Sy %:SQY i!
and A=|n 0 ay L
0 %k welSs,
0 wrxpSySy NYnl}y |
Easy algebra will give that ,j".. i
F_.—A——z+(§ :B)S [m ?'xy yz]+(??_ fT l_?':g?'xz]l

It remains to estimate, A\\B and (', The determinant A will be the
same as before for ﬁ\&ch parameter, but A, will be different.
For 4, A, mll be

&) ' 0 1 0 o |

A& [ Xz, o Tz, 3y,

Zo;z; T Zad Zay,

Tyiz Ty Tagyy  Ey

\t }nch In terms of the variables X, ¥, and Z is zero. It follows

hat 4 is the constant involving the means in the general expres-

sion already caloulated above and that the estimate of A is
therefore

. . S [r—r.r 8, 7, —#.,7
est: teof d =2—5-2 xe Yoy ye =g s ay '@z |
1ma z xS I: 1—?‘2 ] Y3 [—71—?‘2 ]

x ¥
The reader may prove this by working out the determinant A
in terms of the original variables ag given above,
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For B, A, will be
Ag=| 0 0 1 0
Tz, =n» XZx, Zy;
Trw, Zw;  Xai Iayy, .
Doy, Dy Legy;  LYT

H

from which the estimate of B is found to be

estimate of B = 5y (M).
S\ 1-1d, .
Similarly for ¢' we have )y
N
estimate of 0 = —S—(ﬂ"ﬂ’f—.) . A\
S:u ! 1 ‘r:py \’ ”\
We now proceed to the evaluation of the v&n@nee of the
esfimate of @=A+Bi+Cn.
The variance, 4%, the estimate of a%, is \“\ _J
Ay

#h = AZ(,R,‘_ 3)‘4‘
where A, and A, have been deﬁnﬁ& and A already caleulated in
finding F. In the terminology. Qf the present problem
4 = O.S\l g 7.
G~ n Se, Sy
O Zwy Zal Zrgy
\' p Ty Zey 2

N
and \»3 Ao=| %8 Sz Dzm ey |
“S\ Yo, 9w Zxg XY
AN Ty, Swp Xl XY
~O

Say, Ty DXYs Ly
These determinants may be simplified as before by transforming
the variables, and g% is found to be

SE
(R—3)(1—7%) -

[ ((%?)2 o) (5 (5 )))

2
B = - ?"iz + 2’-'"@1; T'yz?aa:)
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It may be noted here, as in the case of the regression line, that if
x and y are ab choice, the estimate of z with a small standard
etror will be obtained by making the standard errors of z and y
as large as possible, but in so doing taking care to balance the
values of the observations about £ and % so that £ -% and y—3
are as small as possible.

Tt is left to the reader as an exercise to calculate the estimates
of the variances of 4, B, and C. By evaluating the appropriate
determinants these will be found to be \

) Sz O\
Ha = (z'—--‘m_l—-—?‘f_) (1 - ?',%y - Tgrz - '?"_,%.3 + 27’“@; Vs '?';rz)’i'\ ’
Xy g >
‘52 N

2 z ; "
=" (] —p? 2 2 oy r)
Ha (n - 3) Sg(l _?.gy)z ( T.r-y Tys ¥z t{wy ry.-. xz)

2 = i B
W= Wﬁ—w (=12~ 2k 2yt s)

Numerical Applipation

An example of the numericalvegﬁp“]ica,tion of the regroession-line
formulae will be found in thefellowing problem.

Table I gives the distribittion of yield estimates of sugar beet
per acre on 100 fields of §0.dcres each. The estimates are made by
eye some time beforethc harvest and are expressed in terms of
conventional marks warying from 1 to 10, Table II represents the
oxperience with\similar marking in the previous year, the
markings » héing correlated with the actual yields y in tons per
acre obtaix\a@"on harvesting,

It mag\be assumed that the regression of y on & is linear and
that the'y arrays are homoscedastic. Use the data given in the
tables to calculate the best linear unhiased estimate, ¥, of the

total yield ¥ on an area of 5000 acres with estimated yields as
In Table I, and find the standard error of ¥. (M.Se. Londomn,
1937.)

Tt is clear that this is a case for the application of Markoff’s
theorem. It is given that

(1) the regression of ¥ on 2z is linear, ie. £(y) = Py T Pe%
(2} the standard deviation of ¥ in arrays is constant, ie.

P,=1 fori=1,2,..,10.



Markoff Theorem on Least Squares

Taswm L
Estimate of yield

per acre in marks Number of fields

1 1

2 3

3 7

4 B

& 10

6 18

7 30

8 10

9 7

10 8

Total 100

v

Tanik (1. Correlation between estimated yield x and agmfslsgield af

x i€+
N
1z 3 4 5 6 7 &% 9 10 _
¥ \® Totals
18 . . . RN, W 1 4 5
16 . LI o1 838 10
14 . . 1 3 BN 53 4 3 . 23
12 .4 10 4 48 3 1 . . 30
10 . 5 8  O%Nt¢ 1 . N 27
8 2 77 B - - . 21
6 17 3  L&N .. 12
4 5083 1,480 . 9
— WS ™
¥ /! N
// 8 12 .\'2&)"’ 97 21 20 11 & 1 1 | 187
“ AN
Total O
/o N
\s

Assume %ﬁ there are n; acres with mark 1, #, acres with
mark 2 N 7y acres with mark 10.

,I\fbﬂows that

g = E nx(py + P X)-
X1

From previous work with the regression line we may at once

write down

and

10 8,
F=3 nX(§+(X-—x)rw§;)
X=1

2 I 10 2 10 Xz E 0 )2]
= - .
iR E ) (e r 2

DPT

Iz
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From the data of Table IT

10
F = 3 ng[l0-788+1-372(X — 4-971)].
X=]

nx are the figures on the right-hand side of Table I multiplied
by 50. Hence giving X valuesin turn 1, 2, ..., 10 and multiplying
by nx it is found that

F = 64,089 tons.

It is left to the reader to find the numerical value of i

N
7\ ¢
&N
e\

E 4
N/
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CHAPTER XTIV

FURTHER APPLICATIONS OF MARKOFF'S
METHOD. SAMPLING HUMAN POPULATIONS

Every ten years in normal peacetime conditions it is the custom
in the United Kingdom to carry out a complete enumeration of {
persons in the British Isles. In addition to the counting of heads,
various questions are asked such as the age and sex of the/
individual and so on. The information thus obtained is tabulated
and collatod and provides information regarding the distribution
of individuals which is vital for the governing of &}e country.
Occasionally, however, even such complete enuinérations as this
may give rise to misleading conclusions. A, somplete census of
individuals was taken in September 1938 a}ter war had been
declared and large-scale evacuation had\baken place. During late
1939 and early 1940 there was a steady drift back to the towns
and many men were called to the.é;‘méd forces; as a consequence
when air raids began in July’lg’jiﬂ the statistician and adminis- -
trator had no really precise.idéa of the size of the populations
which wonld be, and wers, exposed to risk in the large towns.

It is not suggeste {liat the peacetime census figures will be
subject to such yast fluctuations as those of the National
Register of 1939 (Névertheless, ten years is a long time and under
the press of modern conditions it may well be that the legislator
will need t¢ stpplement the ten-yearly figures by & gample census
taken af’miore frequent intervals. An example of this may l?e
foundtin the sampling scheme earried out in 1946 to obtain
nfdrmation regarding the size of families.

There are other arguments which may be put forward in favour
of conducting sample enumerations. If the eountry is to have
a planned economy then it will he necessary to find out what
is the minimum consumption by individuals of certain goods.
Sampling surveys to this end were carried out during the war by
several Government Departments such as the Board of 'Tra,(.ie
and the B‘ﬁnigtry of Food. Only in this way will it be posmble n

a time of scarcity to ensure that no one goes without but that
I2-2
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there is no surplus and therefore no waste of manpower ocours.
Thus it would seem that the process of sampling human popula-
tions, well known to statisticians long before the war, is likely
to be used frequently by legislators and planners.

It is customary to begin by fixing the size of the sample to
be collected, and this is decided most often not on statistical
principles but by the amount of money available to be spent on
the collection of the material and the urgency with which the,
answer is required. A large sample will be costly both in monéy
and in the time necessary to analyse the results, The statigbielan
may state therefore what would seem to be a minimum\ﬁgure,
but the actual determination of the size of sample(iill not be
entirely in his hands. ' ¢

Suppose it is decided to collect a sample of #.0ut of a total of
N where both # and N are likely to be Jarge numbers. For
example, if N is composed of units which at@industrial firms then
N may be of the order of 50,000 and c}}‘the order of 1000. The
ratio of n/N will therefors be 1/50, The question now arises as
to how the sample should be seleted. The obvious way would
seem to be to select n firms at random from the & firms, or if the
list of ¥ firms is in random order to choose every fiftieth firm for
mvestigation. This proceture is sound enough, for the # firms
would give an estimateli}the population of N firms which would
be unhiased. It would, however, in many cases lead to rather a
large standard error of the estimate.

Consider, forexample, firms employed in building houses. The
number of firms which employ only one man runs into thousands,
while themumber of firms which employ thousands of men is very
smaCIJ::f I}it is desired to find out something about the output per
’{“-ﬂ,&li{’-hbur it would be misleading to sample the population of

{ fixttis at random. The number of large firms are few and would
have little chance of being ineluded in the sample; conversely, if
they were included they might upset the estimate from a small
sample radically. It is clear therefore that before sampling takes
place the material must be divided into groups, commonly
denoted as strata, such that the material within each of these
strata is as far as possible homogeneous. For instance, in the case
of the building firms the obvious method of dichotomy would
be to take the first stratum of firms employing one building
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operative only, and so on. If there were obvious differences
between such firms then it might be necessary to divide the strata
into substrata, but the method of stratification will usually be
elear.

If wo have a population N divided into % strata containing
M, M, ..., M, individuals such that

k
LED

then the intuitive choice would be to take numbers from each
stratum proportional to ite size, subject to the restrictiof, that
the total sample size is o he n. Thus if m,, Mg, ..., np-ate the

sub-samples chosen from the % strata then <
E $
m;=n and m;= -5
i§1 * ’ N\\

There is, however, one further point which may be considered.
The variation of individuals within sofab Strata may be less than
the variation in others. Consequanﬂy w smaller sub-sample need
be taken from the strata in whih the variation is small, and &
larger sub-sample from the strata in which the variation is large.
The methods of the Markeéff theorem may be used to show that
“the choice of the numjbér of individuals proportional to the
number in the strattin provides an unbiased estimate of the
collective charactér’in the population, but that if the variance
within the stratun is known then it is not the best estimate which
can be madély”

SUPPQ‘SQ& population 7 is divided into k strata, oy, My .o T
and that ‘the ith stratum m, of the population 7 contains M;
individuals (5 = 1,2, ..., k).

L ;; be the measured character of the jth individual of the
1th stratum, let _ ] M
== 2 U

= I,

and let ¢2 be 03 = = 3wl

It is required to estimate
B OMg k

d = x P u,;,j=zlmaﬁ—

i=14-1 i=
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Let m, be the size of the sub-sample selected from the stratum
7, and lot @y be the value of the jth element of this sub-sample.
Further, let the best linear unbiased estimate of # be ¥, where F
is a function

F ZE;LLJ i

t=1j=

and the A’s are constants to be determined.
It is clear that Elz,,) = T,

whence, remembering that the expectation of F must ~be

identically equal to 8, we have O
sa(Ea-am)=o. o
i=1 "\
#; is constant for any given stratum and it follows thercfore that
the A;; must satisfy the condition o\
\ 4
E Ay = M

for all{, The (standard error)? of F. ;Fo}lows directly from definition,
ok = éf(F o).

In any given stratum the®ampling will be without replacement.
Write for CODVenlell(}e’ O '

By deﬁnition \ \ ;-

ﬁ—-ﬁb%u ﬂ

Rome mg
~ 5‘ éﬁ 21 E A’ag(x‘ag E E E Aﬁj‘ Aﬁ(x{j - ﬁ‘f) (x{r - E‘i)
\ \ i=1 j= i=1 =31=Ft——- 1 _

+2 Z E E E Ay Al @iy — i)(“f;sf'“ﬁs)]-

i=1 g=1i+1 =1 {
The first part of this expression is meedia,tely evaluated.
5;2 ? oy —%,) = Z Z A}t

The second term involving the cross-products is more difficult
but only in so far as the enumeration of the individual terms is
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concerned. The third term is zero for obviously z,;is independent
of x, for all i=s, for the drawing of an individual from one
gtratum cannot affect the chances of an individual being drawn
from another. It will follow that .

TR My
€ X X AyAgly— ) (By— ) = 0.
=1 f=1

The second term will not be zero. The drawing of one individual
from the ith stratum will affect the chances of another individual
from the same stratum of being drawn and therefore the drawings,
of elements from the sth stratum cannot be considered asinde-
pendent. Consider the expectation of a typical term of the
summation, say .

Q"

EN A gy — ) (g —Wy))- B
By an appeal to first principles it is clear thaf\’
M-t My A\ 21(M, — 2!
g(x“.‘r‘ - ) (xtt ’1&1;) = E |1 E {uzh"' 1) (uﬂ ut) MI .

This may be simplified by the dewce used in Chaptar x1 and we

have " 5
0= ( p) (um—“i)}"
A=1

¢ \J M

E (uh\“) +2 ).4 S (g —T;) (=)

R=1 I—Ia+1

from which 1}:\ 1‘s\easy to see that
Mi—1 M i

\\:~ ~BI02—2 Z S (=) (g~ )
& h=1 I=h+1

2

\USil‘tg this relation, we have for the expression of %,

o3 = Ea-zzaptz 3 Elﬁ"ﬂ( MT )]

i=1 jltﬂ=

Making use of the fact that

: a mi g Me
(ij Aﬁ) = T AL+ Y T Ayl
J=1 j=1 =1 t=1

jHi
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the summation signs of the second term on the right-hand side
can be reduced to two and o} rewritten

E M k o-i} mg 2
@=¢§ﬁ@rJEP %M—JE )]

We now introduce A;. It is eagy to show that

B = By (B o) -
i ] . 1§ i N\

whence on substitution into the expression for o3 we O'btﬁln

finally . O
k M,— M om N
— G’E i £ A_E + ! A% _t)‘3 2)] -
$§1 ( M M—-ljgl( f'\\ )

It is clear that the A’s which will satisfy the\givéﬁ condition and

also minimize ¢% will be A
M \
aj = a‘i = hov
Substituting in these values for F and ¥, if
_ .'f 1 m
Tp=— Typ
- Lo f§1 ki
+8 3
4 N/ k
then \ N F=3 Mz,
".: .." i=1
o £ T M3 M—m,
and N g1 ’“:I .
\.\ P=Z0 % o

The vaﬁ\ance of the estimate F will therefore depend on the size
of ths sub-sample taken from each stratum, for o, and M; are
“fizel numbers descriptive of the population. If the whole
\populatlon was enumerated then there would be no estimation
involved, the exact value of F would be # and the variance of F
would be zero.
The size of the population is fixed and is equal to

%
N= 1_2}1 M.

We have seid it is customary to fix before sampling the approxi-
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mate size of the samplé to be drawn from the population. Let »
therefore be a fixed number where

&
n= 3 M,
i=1
M.o3
R
Let 8% M1
and rewrite 0%, somewhat arbitrarily, in the following way:
Nenk O
g-%, = _?E 3 MS% £\
L | LN
% 2 ' N g 2
. Ek:m [ML-S';“ ,;Z:‘]ﬂfis{l __E % i [gj:\_iiglﬂi‘: ijl
i=1 ¢ iy 7 % =1 N\¥ N )

~NY
It may be verified algebraically that this ;ﬁl}es to the expression
for 0% already found. If the size of th¥\gitb-sample drawn from
the stratum is proportional to the ‘otal number within the
stratum, i.e. if m, is proportionakte M, then
X5 s mst

" =1

Il

U—%, =

s

X ¢
If m; is proportionakie M;S;, then

% 2
¥ k E ; Mi'si
0'1;-2 ==\Nn Lid -EIJM’;S%_% .gl'Mi(Si'_i—lN .

7\ i= i=
This imb%;l that where the size of the sample is fixed & smaller
valueWill be obtained for the variance of F if the numbers chosen
forthe sample from each stratum are proportional to the number
“within the stratum and to the standard error. Neyman has
pointed out that, while the standard error within each stratum
is not known generally, improvement in the acouracy of 1'3he
estimate will he obtained if it is decided to begin sampling
Proportionately to the number in the stratum only, and then,
by estimating the standard error within each stratum from the
first observations taken, to readjust the numbers of the sub-

sample so that they are proportional to M8
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Example. In some countries annual surveys of the crops grown
on farms are made. For this purpose each year a stratified random
sample of 1000 farms might be taken to provide data whereby
yields may be estimated, etc. We shall suppose that the whole
population of farms is divided into strata acecording to their
acreage. It is desired to estimate the total acreage under wheat
and it may be assumed that the standard error of this acreage
does not vary to any marked extent within farms of a given
acreage from year to year. Tt will be legitimate therefore to visé, ®
the estimates of §; which hayve been caleculated from previous

. years. These are given in the following table. (M, in hund.reds }

z 3

Acreage eode no, { 8§ M; Acreage eode no, r PN M
1 73 180 ] o5 20
2 1-3 100 7 4.5 15
3 51 110 8 N aner 3
4 21 70 9 N | 66 6
5 9-2 50 10 Q & 11-2 2

Caleulate the numbers which should, be-drawn from each stratum
assuming (1) m;oc M;, {2} m,oc MiS‘i, and find the variance of
the estimate # in each case. .

The equations of the theory just set out will enable the
numerical caleulations t\be carried out without any further
algebra. It is given.tk{a;i:*

N\ = 1000, N = 55,600,
and hence the'ntmbers to be drawn from each stratum will be:

N
Acreage N\ J ' f
code no i 2 3 4 5 6 [ 7 8 9 10 | Total
mecc s | 324180 | 108 | 126 | 90| 36 | 27 | 5| 11 | 4 | 1001
PRI S | 443 | 44 | 189 | 50 | 155 ‘ 64 | 23 | 11 | 13 | & | 1000

The effect of sampling proportlonately to M, S, is, as might have
been expected, to increase the size of the sub- -samples to be dmwn
from those strata with large standard deviations.

% follows directly from the expression given or may be
c&lcul&ted from

o~ 3 M5
i==1

I a
m;
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where m; (¢ = 1,2,...,k) are first the humbers proportional to
M, and second the numbers proportional to MS;. Tt is left to the
student to carry through the arithmetical processes necessary

toshow that g on o M,8,) < oh(om cc B,

RESTRICTED STRATIFIED SAMPLING

The theory of stratified sampling, which has just been set out,
is well known and has heen in use for some years. This method
should be adopted in all cases where direct information g%,
available about the desired character onoe the sampling eleqrent
has been drawn. There are, however, cases where, even @ftgf the
sample has been drawn, information is not readily available'or it
is perhaps costly in time and money bo obtain, EQ]:”example,
a great many people may be found on inquiry*to have an
ohjection to telling the investigator the angquﬁt‘of their weekly
wages. If, therefore, these people have bgei drawn as part of the
random sample, trouble is caused if they réfuse information. This
is & real difficulty and it is difficult ¢ overcome.

Finformation cannot be obtained about a character X without
difficulty, it has been suggeste@'that it should be sought about
another character ¥ whichi.is reasonable to suppose is highly
correlated with X. For exainple, if X is the amount of the weekly
wage, then X may he dotrelated with ¥, the rateable value of the
house in which the@ndividual lives. Thus we should stratify the
population according to ¥ and then sample within each stratum
to obtain infarmation about X. The aitnation is, however,
complicated ih that the distribution of ¥ within a given popula-
tion nqa‘yﬁot often be known. The proposed method consists
thepsfore of drawing a large sample randomly from the popula-
- #ion‘and stratifying it according to the values of Y. F{'Dm this
siatified sample a further sample is drawn from which informa-
tion is sought about X. : ,

It is open to question whether this method is more efficient
than the normal method of stratified sampling, but if the
co?relation between X and ¥ is close, then insome circumstances
this proposed method may be of value. o

Let the proportions of ¥ in the strata forming the complete
Population, 7, be p,, py, .., Px- Lf X4 denotes the population mean
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of the X’s for the ¢th stratum ( = 1,2,...,%), then we shall
assume that it is required to estimate

— & —
X = .gzl_'pi X’i'

Let the first sample to be drawn be S, consisting of N elements.
These elements or individuals are stratified with respect to Y.
If n,; of these individuals fall in the ith stratum, then r; = m/.l\r
will be an estimate of p,;, where
n, e
Py = g(?‘i) = g(ﬁ) . PN \".\
Let the second sample, drawn from 8}, be §,. Let &‘c”onmst of n
individuals of which m; are drawn from the ithétemtum of S,
If 2;; denotes the jth individual drawn froih, the ith stratum
then we shall write O
N

- E Ty = 931! \
13—
We require to estimate X so we nex’o consider a linear function

kE E nu

F= 3 Z E ATy

E=1N=1 j=1
the A’s of which Wﬂl~be determined by the Markoff method.
Noting that \\ - E(F) =
we have also

| rg(}?) )_,p,;Xl_ 2 z Eflmcf(ﬁ%)

Bince waas drawn without any consideration of the vaines of Sy
it fol.hﬁ's that, even if 8, is drawn from 8, the variable #; will
be\mdependent of r;. Henca
) Z 3 b
wﬁ

1j=
PR ' 2
; §1 jglflﬁjéa(r,;) Elay) = g

o

Ailj pt‘Xl

IIMa:u

Sty
II

and it wﬂl follow that

E ",
EP;(E Iélﬂj X)E

=1 =1 =
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The necessary and sufficient condition that this shail hold good

identically is that

=1

Rewrite this in the fo]lowmg way !

i-1 _ my _fmy

E X{ E Afirj"'Xi(_E Aﬁj—l)' E X; 24 Aﬂj=0 "

=1 s=1 i=1 =i+l O\
In order to satisfy the identity we have that. Oy

'S\
Wk D= 1,2 el

Lﬂwm{) fori4l (1=1,2,.

Ay =1 fori=1,2,...,k

i=1
It is necessary now to find the A’s which saf{ﬁ? these condltmns

and which make ¢% a minimumn, Where

ok

N./

wy . _ 12
0'1":(3?(2 Z E/l-ag"'% EI’PiXi)-

i=1 I=1 f= 1

For convenience write n
N&» omg

é& 'f IEI jE /\ﬁ}xlj
\ =1

and calculate its eggpgctatlon.

3

) ko m _ W =
G =S X S Ay =X %Ay =
8 =1 J=I i=1

AN
We may; Téwrite o}

A
St ( E 06 X0)
k-1 & —
=& E (rli—p X2 +2 % X l(f'igi'.pixi) (reb— 2 :)]
iZ14=it
It will be convenient to calculate this in two stages and we ghall

k
therefore focus attention first on £ ( _Zl (ri&i—Ps ) )

B —p K = El(re—p P+ EWAE— T
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gsince r; and £; are independent. We require therefore to evaluate

& k k
8 £ 0ubi-p X)) = 3 EC-pPEE@ + E pOE- T
At this stage, in order to simplify the algebra, it will be assumed
that the parent population was large enough for any individual
drawn to be independent of any other. This assumption is not

very restricting for the case of human populations which aie\
usually so large that it is virtually true. A\
We now introduce the device of the characteristic xAndém

variable in order to caleulate £(r}) and &{r;r,) whieh will be

~ needed for the evaluation of the second part of o% \TWwo strata
only, the 7th and the ¢th, need be discussed, fqp'thé same argu-
ments will hold good for other strata. Associatewith the sample
of N individuals two series of characteris{ic; random variables
oy and g, for fo=1,2,..,,N. Thesq\(’arlables will have the
properties \\/

oy =1 if the individual f@lls]‘..iﬁ the ith stratum and zero
otherwise. N

f, =1 if the indivifiuéi’fﬂls in the gth stratum and zero
otherwise. /4

3

{w N

N W
"\’fof=n1', and Zﬁvzng
N7 =1 p=1

1t is obvious since

that NO° L3 a Ly
a ~,~'§“ ¥ J%I % =7 and = vélﬂv =1,
w}?\?‘é,’lﬁve said that &(n,) = Np,
\.and it is clear that
' _ N z
En3) = é”( > cxf)
=1
1

N N-1 N
=£(Eo¢f}+2 P cxfocs) = Np, + N(N=1)p3,
=1 =1 3=FF1

whence ' &(ry) = 2%-!—}3%.
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The expectatlon of the product. r, follows in a su:mlacr way

i) = e Snen) = 336( Zos T 4

v=1 . . .
1 ! SNy
= 5 éz( Y afe+ E p) (“fﬂﬁ'%ﬁf)) = Pi?g( —Er) .
We return to the evaluation of the first term of 0. Itis s:mple
to show that :

o

& — Xi)g = 2 ot E Ay,

I=1 jml \ \
gince the z's are assumed all mdependaut. and henee, ﬂn .
substitution, ~\
@?(i; (?"g'—i'% _')2) w'\.'\-:.: '
P’Lqi’
—1';1 N (EG’;E)L;}'FXz)'{‘ ZR%EO&EA{W

and the first term is evaluated. ) o
" We now turn to the second term of the expression for 63, -
which may be rewritten .
Sl — 0 X)) (rify - }":Xe).)"— é’(ﬁ*’r) E(E:E) - i-”s:‘PtXiX#' _

since r; and £;, r, and & are\ mdependent _ |
gigl) = ( E E M\wa”+ Z E Z ”ig Aﬂj)lfﬂ'uxymﬂu) J

. I=1jz1 1 {=1g=1 u=1
which on Substltutmg for @‘B(xb} and & (x;,) and usmg the -.

conditions fop- unblarsedness reduces to
\Y

\'\\ g gf) = E O-I Z Ag}lﬂj'FXiX‘ .'
. B.ald \@ ('?‘fg -p; 1') (?,.:gf P{-X:))
QO o
( iT) Pip ‘( % o'; P2 Aﬂj)"ﬂi"“xix) PﬁPsX_i.X:-
are thus

The two terms comprising the expression for O‘F
evaleated and

g\ ko _m Eopiiwe
= fE [(P%+Mj) ) 0'? % AT‘E::]*‘ El‘iﬂ?jxg

_ . i -
2k21 2 }"’aPs{{N 1)£210“?Eflﬂj}lw"xixs}-

NS i i=1
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Minimum value of o3

The eonditions for the unbiasedness of the estimate F have
been found and the expression for o%. It remains to find what
values of the A’s will satisfy the conditions for F and at the same
time make ¢% a minimum. Consider a function

k& my Q|
¢=0'?«“‘"2E E“ﬂzﬂﬂj» A ¢
i=1i=1 j-1 A\
where the a's are Lagrange’s undetermined mul‘gipﬁt;rs. By
differentiating ¢ with respect to Ay and equating‘the result to
zero we have R4

1 % \J
Gy = ﬁpio?(/\ﬂj‘* (N-1) tgs\i?thﬂj)-
i

Summing for all j and substituting the gonditions for unbiasedness

T \
-1 g ™ .
N p,;pﬂ:@’: \ for i1,

Myl =

TR

1 AW _
Myl = D_JQ‘J?—F N piot fori=1.

AN
It is easy to shoﬂ'\ibj} substituting these last values in the
expression for egpthat

3

:Q‘\' Aﬁj = A.I_f W]Zlell @:':E,
:“\x.:’ 1 .
\\\ Ags = A'U—l—?’;z when { = 1,
A . Py %
" =N =1V == .
C }:vhe Ay = (N-1) (m£ é:li“x Aﬁj)

It follows by splitting the right-hand sum into the three parts

-1 %
X )‘ijb /‘ijpb by /\ajjng,
=1 i=lt1

that Ag;=Ay=0 forikl,

Ali‘f = mig fOl‘ '3: = l.
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The best linear unbiased estimate of F will be theréfor . -

k
=1 )

. k 3 A o
.ﬁ Pegi\ o L X, =X)
F 1‘,%‘1 P N [m, N{.Elpi( ) R
| Choice of m; - Co
The term in ¢} containing m, and therefpre_&!}'__cl:loi(_}e_qu;.' O
altering o% is the first sum. # is the total size of the sample 8, .
ie. & ' . D
n:Em«:-' \

i=1

The sum containing m, inthe expression for o3 may beréstanged - .-
to give oS U

& . ) k 2
o D7\ of 1 Mo Eﬁ)\
35 =5 (S

&y RY O
: ' oo
L’ ] ! 2. i i ”‘o e C
+ 3 ?’??.i-((r‘ b (P'i—i_pzqa/l}g._ i=1 o
i=1 'mi .'.‘ :.. n |
This may be checked by ex.pa?hdihg the right-hand side of the
equation. The minimum yalte of this expression will be reached
when the value of th sgco’nd term is zero, that is when

o, o/ Eirmgd)

N 2
A 3 o] (ph+pagifN) L
. ) :»\.;. i=1 E e _1&. |
or, since pand g, are proportions less than unity and ¥ is & Ige
Dumber\when T
' N _ Py
. ws:“' m{_n_k___-—’
N/ . _ _2110&”«:

When the expression for 0% becomes
L& : 1k o g
02 = — 3 -_ X‘—X} .
¥ n(glo“pi) +Ni§ijpi( o
An alternate method to the above is to use the me’ﬁh‘_)d.-of- N
_sub]_ect_f

ange’s Undetermined Multipliers and minimize o

- o the restriction that the sum of the m; is equal t0 7. _
DEp . -1_3_. B
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CororLAxY. The above analysis may be carried a stage further
by deciding, if the total sum of money to be spent is fixed, what
proportion of the sum should be spent on collecting the first
sample 8. Let C be the total sum to be spent on the inquiry,
let A be the cost per individual of collesting information about
X and B the cost per individual of collecting information about

Y. Then
¢ =A4n+ BN.
Let L, and Ly be the smallest numbers consistent with thé, >
relation ;O\
LA'B=LB‘A’ 7N\ "
and for convenience write ¢ ‘ .
: a bg P ¢
2 %7 O AN
O.F 7 + N 3 )

aA\J
k 2 kN _
whero  at=( S o) amd b= JPUX- T

Since n and A are integers which minimize % it must follow that

ol bt @s',':ff,z a2 b2
mily N—L,m TN n—lp N+l
from which it may be\z{le\luced that
1-‘71}3%}@2._&3 .I-.N'rz }I—LB/‘R;
SMZL/N™ w2 8Ly 1+ LN’

We therefﬁi@\ take n oc @ /L and N oc bJL,, and decide that the
Rnm ofoiaoney should be so divided that the samples §; and S,

should be of numbers respectively
4 .\" 3 .

e

N _ bl _ aC
N\ N=ciap+oe ™ "= 5yAB rad
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All the materia! included in this chapter msay he found in J, Neyman,
‘On two aspects of the Representative Methed®, J. R, Statist. Seec.
xovir, p. 558 and J. Neyman, ‘Contribution to the theory of sampling
human populations’, J. Amer. Statist. Assoe. xxxi, p. 101,

The problemn of sampling human populations is an important one but
in addition the student who works carefully through this chapter. will
find he has learnt a grest deal about the application of the fundamental
thecrems on expectations. ' A

For those who would wish to read further about the sampling problem,
there is & paper by F. Yates, ‘A review of Recent Statistical Develops *
ments in Sampling and Sampling Surveys’, J. R. Statst. Soc. oX\p. 12,
which discusses the problem from the practicsl angle and givesis Useful
list of references. '\\
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CHAPTER XV

CHARACTERISTIC FUNCTIONS.
ELEMENTARY THEOREMS

The characteristic function of a random variable is a useful
device for the calenlation of theoretical moments and cumulants
of probability laws and, by means of the inversion theorem, of
the probability laws themselves. It is possible that its application
will not lead to the solution of problems which could mot t Have
been solved by other methods, but it is elegant mdﬁhematlca]]y
and for some types of problem conmderably Shottens the
necessary caleulations. ~N

The theory of characteristic functions will be treated here in
very elementary fashion, and it will not b possible to offer proofs
for all the theorems. However, it js.dle application of these
theorems in which the student willprincipally be interested.
Sueh proofs as are omitted will b found in other texts.

DEFINITION. ¢_(1) is deﬁnesl \a8 ‘the characteristic function of
the random variable, z, or, of the probability law of the random
variable, x, if ¢m(t) = &(eiimy,

This ch&ractensin&@nbtmn will always exist since
|e““’1 = |(cos?tx +sinte)t | = 1,

and it may; bje shown that there will be a 1:1 correspondence

between \al\pi'obabi]ity law and its characteristic function. The

theorésg, which is fundamental to the theory, we state without

proof

\THEOREM To any probability law, p(x), there corresponds a

\ umquely defined characteristic funetwn, and conversely. By

definition

P.t) = &) = S p(x) e  if the variable is discontinuous
3

=Jp(m) efedx  if the variable is continuous,

the summation, and the integral sign being taken over the whole
range of possible values of x.
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Erample. Find the characteristic function of the random
variable, #, whose probability law is the binomial, i.e.

__n! bk
Trom the definition

ﬂ

$o(f) = (&%) = P

x'(n m)I

n nl

%

~ o zln—x)!

(pe “‘)“9{""” =g +JPE“)“’

The properties of the characteristic function may be sta.tedm the

form of a set of theorems, the proof of which follow “irectly

from the definition. \\
TrrEoREM. If @ is a constant, then ¢g,(f) = qu(at) For,

Bualt) = Ee%) = fwmmkf$WM)

TarorEM. If 2,,2,, ..., %, are random’ independent; variables, .
then « W o

".’1,!;’.. _
5 (2N b (6
| ¢E%Q5M££¢%u
Yor by definiti O
or by definition R

sy fnlig) i)

Since the vambles are independent the expectatmn of the
Product WLli\equal the product of the expectations. "Hence

O “"a( 11 emj) - f1 6 = 180
Ny " =1 ” |
‘and the theorem is proved.

TauoREM. If ay,a, ...,q, ate constants, and PR N L
random independent va,na.bles, then

500~ i ol

For P a2, () = jlii1 Payay(B) = }_Iz Pilast)
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CoroLraRY. If @) =ay = ... =2, = 1/n, then

.
#alt) = T1 1),
and farther, if x;,%,, ..., ¢, all follow the same probability law,

Ga(t) = (Boylt/n))"

Example. Buppose that there are N random mdependent
variables %, ®,, ...,y which follow the same binomial law of
probability ! O)

= .___'— % qn—k NS ©
Do(k) Fa—m 2 O .S

W,
™

What is the characteristic function of their mean 2/
. "
We have shown in a previous example that N

¢'x(t) = {q +peﬁ)n ‘\\:
if # follows a binomial law as given abqv@.‘ Af

» N
X = ﬁ 1~;1x3,
then Palt) = (PalE/N )JN (g +peyy,

which is the characteristic function of a variable following a
generalized binomial m})abﬂlty law.

Ezample. Find th?\kha.ra.cteristlc funection of a variable whose
probability law is’hormal,

Tt is given thats

e 1

\'\
\ for —oo <o, f< +o0.
From deﬁmtlon

Vbt = e - o | o -3 (=5 e

_ oxp g — §(o™)] [+ i e
o J(2m) f o P [—gz(x—(g +ito?)) ]ch,

Hence : &, (1) = exp [itf — L(Fo¥)].
Cororrary. If £ = 0 and ¢ = 1, then

q"’x(’t) = e i,
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We may use the more general result to prove the fo]lowing
important theorem. _
TarorEM. If %,,1%,, ..., %, arve independent random variables
each following a probability law
ﬂ s

Plo <x; <ﬁ} ,J(%)Jl l: (

fori=1,2,...,n and —oo<a,f<+00,

'~ then, whatever the numbers A;, Ay, ..., A, the probabﬂ1ty law of
n PR M \
Y= Za_ij RS

will be a normal distribution with mean E Ajg and vana.nce

02= Eljo‘ \
7 .\\’

é,{t) = H gﬁxj (A1) = H exp[a.l tgj }g Uz]

= exp I}t pH )ngj—u- }] Ajo',]
- Theright-hand express:on shill be recogmzed ag the ch&raetenshc -

funetion of a normal k@na,te having mean Z A,£; and variance

2 A30% and thetheorem is proved. It may be noted that, using

elementa,ry f:heorems on expectations, we could have shown that,

vﬂf(y) 2 A end Ely-EW) = 2: 4 7}
\
@é Gh&racterlstw function hag enabled us here to take & step
forward, for in addition to the mean and the variauce we AI°
able to specify the actual probability law. :
Hzample. &y, Ty, ..., T, 476 TANdOM independent variables esch
 following g probablhty law

[ j A.J'J

fOl'j = 1,2,.. R
(Ej = 0; 1:23 ey + 0.

play) =



'"\
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What is the probability law of their sum?

co Az Afr—a L oo Axeitx o2 =) ()lem't)x

$all) = (™) = = =

om0 ! P
= exp[—A+ Ae“}.
This is true for any xz when the appropriate subscripts are added.

n
Hence for 3, x; we have ~
i=1

63,0 =11 60 = T expl- A+ e O
¥ j=1 i=1 w

f=1 = = '\
= exp I:(eie__ 1) E‘a‘f] .
=%

It follows that the sum of a. number of ra;ndom‘}*griables, each of
which is distributed as Poxsson, is also a Poisson variable with
probability law Ky A

i, "XP[ Bz
R T

These examples ﬂlustraste the derivation of probability laws by
uging their charact@r‘zstlc functions. The sum of a number of
binomial variat E@s been shown to be distributed according to
the binomial I@w, & number of Poisson variates as Poisson, and
a number offictmal variates as a normal distribution.

Consider.one further distribution, that is the distribution of
the %m\of & number of independent random variables

O\

X, Xp ., X

7y

Whén
X; =} and P{a{xj-:b} Jan }J exp [ — $a5]dwy

forj = 1=2,---, n, -—ow<ab< oo,

Let us take first of all one typical random variable, . If this is
normally distributed then a simple substitution will show that
= X has the distribution

£
‘ P{A<x-<-3}_=‘7(_;;jJ;X“*e—*XdX for 0< X < -0,
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The characteristic function of any X will be-

_ 1 [ xa X o lax " "
¢x(t) = @ o exp —-E{ - %t)] = (1—2’.‘.5) .
Tt is desired to find the distribution of

=1

=1
]
The characteristic function of 5_.‘ X; will be
$3 50 = 601 = 0~ sigpn, O

2%
S )

This will be recognized as being the charaetensm ’flmctlon of
a variable

AN/
= E X, = E mz':"\ "
i=1 d :‘=1‘..&" )
where the distribution of y? is O
o 2
8 o aZ o nd Jin—Tg iy d %
P{Xl‘{;’k {Xz} 2”‘?{}%;’2 J. (X e (X)

Q)r 0 << a0
for

b2 = W\T et ) = (1 r——
Wemay P’I‘Qtfeod from here to show that tho sum of apy namber
of mdepﬁ\l‘laent % is also distributed as y* For if
“w () = (1—2it)H _
\"ﬁmf’he characteristic function of x* distributed mth n degrees of

tedom, then the characteristic funetlon of

Y=ZX?}:

where X?} is distributed with n, degrees of freedom, will be

E 7

$plt) = H (1—2if)—im = (1 ﬁzu)
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From a comparison of ¢,2 () and ¢ (£), the probability law of ¥
will be

PlA<Y<B} = 1 J pREm-loargy

&

2" r(z s nk)

for 0< ¥ « 400,

which will be recognized as another §2 distribution, The reader\
should check this by writing down the characteristic functioh of
Y from the distribution and comparing with the ehara,r?terlstw
function already derived. N

These examples are sufficient to show how by stralghtforward
application of the definition of the characteristic function the
distributions can be obtained of various corabisiations of random
variables following given probability laws; %Ve may now proceed
further and discuss the application of the characteristic function
to certain limit theorems which haydalready been proved earlier.
In order to do this it will be nece§sary to make use of a theorem
which we shall state without proof.

THEOREM. Lebt Py, Py, 5 Py, ... Tepresent a sequence of
probability laws and /@)t), @a(t), ..., b, (2), ... be their corre-
sponding characterlstac}unctmns If $o(t) tends to a limit, Goft),
uniformly in any finjte interval, then p,, tends to a limit p, and
the characteristic function of p, will be Po(t).

We can usd$his theorem to prove the theorem that the normal
curve is the\11m1tmg distribution of the binomial as the n of the
bmomis@ Jaw increases without limit (see Chapter v). We shall
begm by defining a ‘reduced’ or ‘standardized’ variable.

~Drrnrrion. The random variable # with expectation equal
{"%6'm and standard error equal to o is said to have been ‘reduced’
or ‘standardized’ when it is referred to a zero mean with unif
standard deviation; i.e. the reduced variable X is

Tr—m
o

X:

The characteristic function of a reduced variable will be

& o = &(efliz—miel) — g—ifmlr Letlale — e—tumlz _(£lo).
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TrrorEM. If & iz a random variable distributed according to
the binomial law, then whatever «

E—np i
[Nf{npq)“} (%r)f e s noo,
where

7l . '
P{k = kl} = mphfa_ki fOI' IG = 0, 1,2,.-.,'”

k—np ' A
et 4= Jowey ~A
X is then a standardized binomial variable and there~will be
a sequence of probability laws p,(X), Pri1{X), - earrespondmg
to increasing ». If it can be shown that thex "c%racterlstlc
functions of these probability laws tend to a ]131113 s n—>c0, then
by the previous theorem it may be assumed/that the probability
laws also tend to a limit and this limit wﬂl\ha,ve as characteristic
funetion the limit of the sequence of &haracteristic functions.

From previous definitions \\

$x(t) = exp J(‘,qu) qsk( Jtnm))

( ER{\/{ pq)]"Lq p[ d{npq}])

The interior of the rlght -hand bracket may be expanded into two
exponentxa,l senes to give

%p XP[J( npg) | T4 p[ J(npq)])

\‘ =ptg-

2! 1 wpq (pg*~+ (\/ (npg) )

X 311 I:;pg3 exp (6’1 \/(—g-g—)) —gqpPexp ( —b 3-(‘%3})] ’

where 0 <8, 6, < 1. Remembering p+g¢ = 1 this may be written

01 BB
= -*%‘l‘ ni’
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where

=?%[qu»exp(@\%)_qpsexp(_(gw{i—fm)}_ -

As n—>o0, | R | <M, where M is some fixed number arbitraxily
chosen. The characteristic function ¢ x(#) is

- 32 B a 2 n taR )

px0=(1-5+ ) = (z) () o
)

25 o \

\Y

We are now in a position to investigate the limit_ of‘ ¢X(t) as
n—00. Consider first ,,‘ :

Take logarithms and expand the rlght;ﬁa,nd gide as a series.

Ne/

| BR XY PR
ogz=1n ) AN - VR
D) -0

This ig a convergent se}es each term of which tends separately
to zero, as n—>oq, Kénce logz tends to zero as n tends to infinity

and therefore z tvends to one a8 » tends to infinity. Now cons1der
the term \ .
\ o 22

9 Nl a 9 =

f= 4 t 2

Y. {12 LA CE
A O T o

my'ﬁ?nas o exp (— 1£2) as » increases without limit. Tt follows that
\/ |

Lm ¢y (t) = e,

=

This is recognized as the characteristic function of a variable
- whose probability law is a normal distribution with zero mean and
unit standard deviation. Hence if

plk) = " Eln k)Tpg‘" fork=0,1,2,...,n
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then whatever the value of a L '
k—mnp 1 @ ' '
s <) g e w0 noe
We may now pass by similar analysis fo two theorems each of
which may be considered as a special case of an important
theorem of Liapounoff. It is convenient to diseuss these two
farther special cases in detail before passing to a simplified form
of the generalized theorem which we shall prove i the next
chapter. In each of these special cases we shall assume a theorent,
used implicitly in the last theorem, and it may be well therefore”
1o state it explicitly. A\ NS
' Tmeormw. If R, is bounded, that is, if there existg-a mumber

which exceeds | R, | whatever n, then R\ X
R, \* - '
(1 +n—1.+‘") -1 as n—»co\\
.‘ R
.1_{‘6‘;-0.Writc u=(1+nl—:_"‘?):3.’

/~”:Rn 1 RE :l

'R
Then ]oguznlog(l+n—“)#f& PSRl R

144 LN
Fach teirm of this seriesends separately to zero as =00,
provided &> 0, since Rg~is bounded. It follows therefore -that
log#—0 as n—c0 and that «—1. -
Laplace’s theorém concerning the limiting digtribution of a
binomial variableowas proved in an earlier chapter by straight-
forward analysis. The next two theorems could also be proved
without refgrence to the characteristic fanetion, bub there is no
doubt, 4g'in Laplace’s theorem, that considerably heavy 3'1%?1)1:3
wopldibe involved. Using the characteristio function hmlt
‘bhg'aor‘em the proofs are comparatively simple. Let us conmdelm an
\extreme case and show that under certain conditions the distri-
bution of the sum of % standardized variables, each following
Poisson’s limit to the binomial law, tends to normality a8 nt:énd's
to infinity, . '
THEOREM. ,,4,, ..., z, are random independent variables each
ha\r_ing & probability law : o
Plag) = e—-lk—)tg fork=1,2,...,n and &= 9, 1"?’{‘"‘"’

x|

+.90:
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If £ = &y + 23+ ... + 2, then, under certain conditions,

v kz;lk 1 @
o b=t - i
P - 7 <@ —>4(2ﬁ)J~_me df as n-—>o0.
(£2)
k=1
We have previously shown that if
—Ap A%
plag) = %/}"k forz, =0,1,2,..., +o, £\
k .
then $2,() = exp Ay —1)]. &
If T=0+tx ... T2, ,‘i:’
" N
then #el) = exp[ @=1) [ D
E=1 s\

from which it may be deduced that the n}ealﬁ and variance of

n RS
z are each equal to 3 A,. It follows tl{at\
k=1 O

AW
2 B A
JONe=a
Y=

SE
“~ k=1

is a standardized Pois\smn variable. Write for convenience
O

.\\”. Z Ak = o-iu
o k=1
From first pl\'i;[;lciples
o prit) = expo}etor— ot —ito,].
It is'n\éc\:e’ésa,ry here to distinguish between two cases.
”Q‘a)e I. As n—>o0 it may happen that o} tends to a finite
Aimit, i.e. n
NN ZA=05>L<+w as n->oo.
N/ k=1
If this is o, then
lim ¢y(f) = exp[Le#L! — L—itL¥],

which is recognized as being the characteristic function of &
Poisson distribution with mean L. Hence the theorem cannot be

true if Zlalk has a finite limit as n — c0.
.
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n
Cuse I1. Assume that 3 A;, = 0% > + 0 asn—> oo and consider
k=1

the logarithm of the characteristic function of Y.

t .
log gy (t) = ( i efilion,  where 0 <8 <1.
3‘0‘
Hence, ag n—> o0, lim ¢y {t) =¥
o

and the theorem follows. Accordingly the standardized sum
of » independent Poisson variables will tend to be normallys
distributed as increases without limit provided that the sum. of)
the means of the n variables tends to infinity with 2. \ O

TerorEM. The standardized mean of # random Yan&bles,
each independently and rectangularly dasmbuted,“(ends to be
normally distributed as #—>c0.

%, %y, +rr, T, are random independent va,mg.b]es which are
rectangularly digtributed. Assume therefa@ 4hat

I
plag) = 5 for —a<w,< +4 j}nd zero elsewhere,

fork=1, 2,~,n
We begin by finding &(z) atid, o
g

o fredide, o
o 2a 3

¢ (g,\l(% )2 12
s =\ S T, = — -
SRV = A !

Ift_‘hel‘efég 'Y is the standardized mean of the #’s, then -

AN n
~O z
QO v (g(m) T El !

= = i ain
. For any «,

ao b em__e—ifa gin @
¢x(*)=f_f P R

Hence Pr(t) = (96%: (g-_i;))ﬂ - (%)u
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The numerator may be expanded in a sine series and we have,
for 6<f<1, . '

1 3\ 1 3\4 AN
O U VRS OV R V)
' . _. 1_£ (4 0t cos (Gt /(3/m)\"
R 5lu? (1—(32n)) /
By a previous theorem the right-hand bracket may be ghown to
N\

tend to unity as » tends to infinity and
25

2\ 2N 5 "\\’
(l_é_n) =(1_;_n)t 2ot ag n—»ao.:\\'i

L 3

We have therefore that the standardized mea.nngif”a”o variables,
each of which is independently and rectangulatly distributed,
tends to be normally distributed as » is inereased without limit.

a\,/
(N
REFERENCES ANDREADIXNG

The standard text (in English) on chai'écf:eﬁstie functionsin probability
is H. Cramér, Rondom Variables and, Brobability Disiributions, Cambridge
Tracts in Mathomatics, o, 36. Thistext has been out of print for sorae
time and ig not easily availahle." In any case a certain degree of mathe-
matical knowledge is necosséyy in its reading.

In M. G. Kendall, Thelddvanced Theory of Statistics, the student will
find the characteristiq"f&nction uséd in a variety of ways. There is no
elementary toxt which“can be recommended as it is very difficult to
develop charactéristic function theory without making congiderable 150
of the theory ef functions.

\¥/
xt\"'
O

N/



CHAPTER XVI

GHATRACTERISTIC FUNCTIONS: MOMENTS
AND CUMULANTS. LIAPOUNOFF’S TEEOREM

Before proceeding to discuss a generalization of the two theorems
proved at the end of the last chapter, whereby it may be shown
that under certain conditions the mean of the sum of # random
variables of whatover distribution will tend to be normally
distributed as » tends to infinity, it will be necessary to discuss,
certain properties of the characteristic function as a moment
generating function as these properties will be neede‘d,’ffzo\f the
proof of the theorem. We shall consider first of all pherelation
between the characteristic function and the mioments and
cumulants of a probability distribution. ’

$.{t), the characteristic function of the ;agidém variable, , is
defined as R : 2\

6.0 = [ Templayds or, Bl = TP

according as the variable is conginuous or discontinnous. ‘We now
assume that in the neighbourh’bod of t = 0, ¢,{0) i differentiable
with respect to ¢ as oftel\as desired, and we write for both
continuous and discpn‘eﬁl ous variables,

A\ 2
B $ol0) + B0+ 5 U0

We shall o ’ﬁﬁe gursolves to discﬁssi_ng the case where the

variable igsdentinuous in that the situation is a little mors com-

Pﬁcatﬁd\\’bﬁﬁn for the discontinuous case, bub the diseussion for

the_disbontinuous variable can be exactly paralfleled by the

Ji?a;,ﬁéi substituting a summation for an integral sign. We: sha'.]l
Ngonsider the terms on the right-hand dide of the expansion 1

turn, 4 0 e . .
$(0).  P{0) :J plx)de =1 by definition.

- xtj‘at)"';ﬁz(t)
g gty = Jm BT
= lim L *wp(.’c) (ve)”’—é“’) da.
_?_ﬁf—r() o R P . »
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Expand ¢i¢+#2 in the following way:
2
oltrdte — gitm  Bf(ix) €™ + @3— (1z)2 148902 where 0 << 1
and substitute into @5{f).

. +w i ) . .
Pi(t) = lim J plz) ixe“x+%(3x)ﬂei(!-{—86l)x du
. #H— -t I

+ +eo "
= z-[ gy, p(x)dm+ llm %zﬂj gm0z ) da N
—¢a —0 0

The first integral on the rlght-hand gide will be hmte prqwded

[IEICE I

is finite, and the second provided the first twomioments of  are
finite. Let o tend to zero and we have Y
+ao A
s =20 =i [ pio) e
and at the poi =0 K.
$40) = »»j i) do = imi*
In a similar way it m@y be shown that

\I‘\ “quﬁ(t) J. eitex? plx) doo

e
and thereforé\that
e\ W[ s
O o= [T pterta = oy

A a}mﬂa,r reasoning will give values for the higher derivatives.

~ We have then
\ 3

£)2 g
P8) = 1+t m1+(;? 2+@32 My
that is, the numerical coefficient of
) r=12..
rl

in the expansion of ¢,(t) in powers of ¢ is the rth moment of the
random variable 2 about an arbitrary origin.

* s is used instead of u for ease of writing.
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A simple extension of this theory gives therelationship between
moments about an arbitrary origin and moments about the mean;
for,

o 4 ) ,
6.0 = | otpte)do = s [ et = i)

or ¢z(t) e—ﬁm{ = qb:c—m{(t)
as proved previously. Bxpand each side in powers of t
i) @2 '
(1—}-@3 :m1+(21 Iiig + 1—stmi+ 57 31 MyE— .. O\
‘t 2 “ 3 N

and equate the coefficients of equal powers of . Wg}bﬁire that
My = mz”-mi s \:
My = My — 3mm; + 2m’, 0
My = My~ m3m1+6m2m’5 3myd

and so on, relations which ate very “familiar to the statistics

student.
Bzample. Find the moments of the bmomml variable, &,

whose elementary probabihty law is
plk) = ﬁ_/ kqn—-k fork=0,1,2,— s

We have already found the moments in tWo different ways. This
third meth0d is an improvement in labour on the first and is as

qmck t?\xc&rry out as the second; thus.
¢‘k(f‘} (@+pey, $4(0) = inp, ?5:;(0) iﬂ(np_?%pﬂ_i_ngpg)

\Eﬂld 80 Om. |
Example. Find the momnents of the norrnal

integral probability law is

P{a<w4ﬂ}._ —j ex pl:wu—— di for-—oo<w<+oo.

variate  whose

J 2

The characteristic funetion is

$,(t) = exP [—- g{gj’]
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whenece
$L0) =0, $L0) = ite? $L(0)=0, $iF(0)= "o, eta.
Example. Find the moments of the variable, x2, whose integral
probability law is :

A
Pla<xt<f} = ginpig |, 01 ) Tor0<xt< den

In a previous chapter it was found for ¥? distributed in this W@(
that the characteristic function is

Ppalt) = (1— 2ty ¢(\A
PR
Differentiating with respect te ¢ and putting ¢ = 0 we have

: CBa(0) =i, Fa(0) = PPn(n+2),70)
and generally O

ot

7820 _ ionin2) ... (n42@— 1)
It follows that ' \ \ ;

my=n, my=32n, my8H, m,=12n(n+4).

We may now carry the theor.yf z;«'f;;ﬁage further. Assume that there '
are n random independentyariables &, @y, ... . It follows from
definition that

$3M) = P2 090,0) - f00)-

Hence if we ._Qgﬁp.e another function, sometimes spoken of as the
cumulativexfunction, as

' 7. Yolt) = logg,(t)

il follow that * :

it wi

R 2 WU RS RS ORI S PAUE

e . =t
“\'Thus, whatever the distributions of the random variables,
provided that they are independent, their cumulative functions
will be additive. We may use the definition of the cumulative
fanction to define the cumulants of a distribution. These curt¥”
lants ate the same as the semi-invariants of Thiele, Consider
1,(t) and assume, as for ¢, (1), that it is differentiable a8 often a8
desired in the neighbourhood of t = 0, i.e. assume that W& may
write . "

Yalt) = Yo(O) +-807(0) gy Yl 0) & oo
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Following closely the previous work it may be shown, by
differentiating the logarithm of the characteristie function the
required number of times, that

{s8) (s (i)
.ﬂr (6)_‘ml(1’t)+m2 2| +m 3 31 +( 4—3??12) 41 +-..
Writing formally
@2, 0, @

Illf.'..“(g = Kl(?’t)-l-xﬁ 2' + 3 g 3| +K41 41 +""’ £\
where &, &y, ... are calied the cumulants of the variable ai,itwﬁl
be seen that _ R \/

K, =my, ky=mMs, Ky = Mg — 10mgmy, \\

Ky =My, Ky =mg—3md, K _-mﬁ—151\1»111:1»1,2—-1014?,.3,+30'ﬂre,2

These may be written the other way ro@d\tyo give
my = ky+ 3k, My = K+ L10KzKy, me, 2%+ 15K, Kg+ 10k + 1548

Tt is also sometimes useful to he able 10 express moments about
an arbitrary origin in terms of ‘hese cumulants, viz.

ml = Ky, <

[ ¢ J
m2 - K2+K"}, \\ w/
My = Kﬁ\ébc x1+ 3x§+ Biy 2+ K,
'm5 %str Bic i, + 10Ky K + 10kk3 + 1555, + 101,45 + K
\mﬁ = kg + g iy + 10KgK + 15k, k2 10k3 + 60K Kp Ky
\‘ +20;<3x3+ 1563 + 455363 + lﬁlec‘-i-x“-
These may be checked by substituting momenflss @bout the mean
for moments about an a,rbltrary origin. Now if o
' (at}z (i)
P, (1) = log g, (B) = ey (i) + K 57 f“al 3l rees

. t 3 t
iﬁzg (5) = log,, () = Klz(""t}‘l"xsz (;3 +K32“3| e
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then the cumulants of the distribution of z; +x, will be given
by the addition of the cumulants of the separate distributions,
always provided z, and z;, are independent.

iﬁmﬁxg(t) - log ¢x1(t) +]0g ¢Zg{t)
(1’_23); (Kg1+ Kga) + (i;)f (kg1 +Kge) + ..

#)? 3t)?
[ 2)1 K2+(3)r
It is this additive properiy of the cumulants which makes' ’bhém
of great use. \

Example. Find Sheppard’s corrections for moment:s ealculated
from grouped data.

One of the first things studied by the reader m statistics is
the grouping of observations and the corregtion of moments
calculated from these grouped ohbservatigns for the effect of
grouping. If X be the true value of\g %.rla,te, X the central
value of the group extending from Xy —1h to Xy+1k, and 2
the error introduced by groupmg, ‘then assuming independence

Xa— J_,,—:c Cur Xp=Xg—n,
?SX +m(t} = ¢X_E(t) ¢m(t):
and ‘(%g-i—x(t) = "/’"X,g(t) + ¥alt)-

Hence, if &,(G),(kp{@); -, &,(G), ... ave the cumulants of Ken
k (B, ko(B), 2SCk,{(B), ... are the cumulants of Xy and xy(®),
Ko{T), .. ,K,,(f&), . are the cumulants of =, we shall have

\%(G)— HE)+i(x) and  k(E) = k,(G) —&,(2)-

The eumulants of the grouped observations will be caleulated
~fzjom the data. It remains to consider the cumulants of the
rouping error, 2, and in order to do this it will be necessary to
make assumptions about its distribution. There are many which
may be made but we shall only take the simplest, i.e. that = is
equally likely to take any value between — 3k and + 4. This is
equivalent to saying that it is assumed that the integral
probability law of x is

=¢d{Kyy + Kn) +

= {fK, +- Kg+ .o “\

Fla)=Pla<e<fi} = %J.ﬁdx for —th<x< +4h.
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The characteristic function will be '

t 1 i e . .
{'ﬁx():EJ._%e =W.

Taking the logarithm of ¢.{t) and exp&ndmg, a8 in previous -
examples, we have .
_ (52 RS (i)t | A ()f
Val) =13 37 "T20 41 Y202 6L

2 . ke <)
Hence  ky(@) = mg =15> Kky(x) = my—3mj = ~120° ) O
' ~ '
Kelz) = mg— 15my My — 10m3 +30m3 = 252\

If we write uo(@), py(@), ... for the moments of the grouped
observations about the mean then from tbﬁ\l‘d&tl‘mﬁ"h—l{’

k(B) = T(G) kr(x)
it is found on substitution that
) = Kol €) — K D=1,
k3(E) = &5(G) —%3(37) #3{F)s :
ki B) = " kile) = (@)~ O+,
.and the correeted Thoments of the distribution will be -
'..\;\ 1l B) = (G~ H2/12,
O (B = pal6),
) = @) A @+ sk

\ '}jﬁe corrections for the higher even moments may be caloulated
similarly. There will be no corrections for the ;’d]d .
:llght be expected from the assumption regaraing the distrib
1on of the grouping error.
Ezample. Find the cumulants of the binomla‘l' variate, £
Wwhoge elementary probability law is

plk) = k'( k) Tp"q“’k.
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It is known that dult) = (g +petyn
or, for k referred to np ag origin,
o) = Pr_nplt) = (e~ +pea),
Hence i () = nlog (ge~*# + pe™a)

and the eumulants of the binomial are obtained by successive
differentiation. '

k=0, ky=-—npgp—q), «5=—npgp—q) (1—12npyg),
Ko = mpg, Ky = npg—O6nipid, ;= npg—30nPpPPP+ 1‘?%3}?59'*‘

Erercise. Find arecurrence formula for the bmomm],eumu]ants

Exercise. Find the moments and cumulants, Qf a ‘random
variable whose probability law is Neyma,n’s."cbﬂtagious dis-
tribution,

Ezample. Find the cumulants of the coﬁtinuous variable X2
whose integral probability law is \

Pla<yi<f)= 2nrﬁr(1n)j
The characteristic function, of the variable x® has been shown
to be B )= (1 2it)

Hence ¥rplt) i\I"g Byalt) = —gnlog (1 — 2:8).

~ By successive d;ﬁ‘erenhatmn {and putting ¢ equal zero), or by
expanding in’péwers of ¢, it may be shown that

2)*’”’*15—%?(”03{9(2) for 0 < ¥2 < +o0.

Ky =ty “xg =20, Ky=8n, k,=48n, ;= 384n,

and g@ﬁ\erélly that K, =2"1{r - 1)!n.
,Ih?'fﬁl’oments of ¥? are easily obtained from the relation between
Scimulants and moments. If there are s independent variables
each distributed as ¥® with integral probability law
Pla<yj<pl= I T(Iny) L {(xPrte 1 d ()
for 0<yj<+cw and §=1,2,..,s
then the cumulants of the distribution of their sum, i.e.

CxEP=ad4 s e
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will be given by 8 . - .
=% () =27 - D2 vy

where r takes values 1,2,3,... to give K;,Ks, Ky, .. :

The relation between the characteristic functmn and’ the' :
moments of a random variable will be useful to proves s:mphﬁad.
form of Liapounoff’s theorem, specialized cases of Whlch have
heen discussed in the preceding chapter. : '

LiaPOUNOFF’S THEOREM (SIMPLIFIED). . = \
¢\
(1) Ifz,, 2y, ..., x, are mutually independent random varigbles.
(2) If 2,7, ...,%, each posscsses the first three abgoiute

moments, fﬁ)l!m B B h=1,2,. ), \\
+m
where Bar = J._ | 2y — (@) 1“?(«"{&&%
4
or Box = E | 2, — &(xy) [“p(a:k) fqra =128,

according as the variables are cqn‘bmuous or dlscontmuous
(3) If the second and third! moments are each bounded is.
if there exist two pairs of numbers :

m{gg/lz and my<M,

such that

0 < 7h X fose < My and my< <M

then the st ndardmed qum of the #’s tends to be normally'_ :
distributed s’ n tends to infinity. : R
If wey 1te
D ot = ¥ 0%
) k=1 .
Nthen ¢, the standardized sum of the z’s may be writen. -

i

pIgs El.“k
x=k—=-1—-——='—'—',
2

Whers , 4, denotes the mean of the variable 2y,

eror {i.e. \/24“';2)
~ Let

and o3 its_stand&l_-’d L

& = Ty, — 1
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Then &) =0, &EE) =0} =ty EER) = st
and elearly, provided the moments of &, exist, the moments of
£, will exist,

The characteristic function of 2 will be

o) = é(exp[ 5 B ) )

i een[8]- afl)

Expand ¢,(t) in powers of ¢. The mean value of & is ze(o »ahd
we have therefore y

/

8, 2500
Pe () = 1+ ol TR Where'giec L.

Generally

290 _ i f “gtp@ag or a%’%* i* S £ @)

and hence

2 a J—uo
pe) = 145 o1+ GEY emmipicy s,

for the continuous variable." For the dlscontmuous variable the
summation sign will repka,ce the integral sign. It is clear that

' adbpeae< [ |apreas,

The ﬂght-hand\ mde of this inequality is finite; for whatever &

there existg’#vo numbers m; and M, such that
© o
g mas [ |6l p(E) das 3.

We‘may now proceed to a consideration of ¢, (t). Write
vV
Be= [ BevpE)ag, or TEp(E)

as required. Then

$a8) = 11 (1 DRk @ %‘)
k=1

2! g2 3! pi

or, if we take logarithms,

2 ol PR,
2l 3!

v = S1og(1-5, 2 ).
k=1
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Expand in the usual way

¢ Ok . i B,
'ﬁx(t) = E I: (2%2 31 0-3)

1(% o} PR, £ o} iR,
#"ﬁ(ﬂ?—k?ﬂ 0‘3) (1/(1 (2! 21731 5 ))?:I,

where 0 <¢ <1, Writing

0= (1/(1- {8 a%g;j‘f;v))) .

AN
¥,(f) may be written as S \J
" A ot Qy KYy,
)_ 2-—6;‘110’3 8;521 ot “‘ }
s . Rsz
12 kZ_ By Qut gy g5

We have now to consider the behaviour of chh of these terms as
# 1s increased mthout limit.

(1 E Rk It has been shown that

| By ‘} g Ms
and therefore E E‘J‘“‘ Z | By | € mbly
p=1)
Similarly 0N ot= 210'% Z Wiy
O P
P,
2\ 5
\ O” 351 Bx nMy

Hence :\ ™ Tt Caimd

M afﬂd ‘mg are fixed numbers. It follows that as = tends to
ifihity the right-hand side of this mequahty tends to zero, and
therefore that n

{2) Q. @ was defined as

el

where 0 <e<1.
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We have investigated the behaviour of the term involving Rj.

We must now find %
lim %%
A= 00 o?
2
s o M.
From definition 0<—fa—2
72 mm,

and hence the required lmit as % tends to infinity will be zero.
It f0]l0W$ that . n]iyrr‘:'o Qk = 1. ~
It may therefore be shown that as » increases without liy:r:kiﬁ‘eﬁch
of the terms except the first in the expansion of ¥, {#) tends
separately to zero, or that )

o (ty—> —4% as n-—o0 ~\\

and Polt)>e ¥ as n—>D
Hence under the given restrictions of thQ ‘aworem
n [ ’t ’
T o 3 ot 3
Plag®=t & "i-'—;— Pt j edx as m—>00
( » 0’.%:) N .\'{(2?7) o :
E=1

This is an extremely powerful result. We have shown that, subject
to the random var«'a@leﬁ being independent and possessing the
first three absoldte moments, their standardized sum will tend
to be norma]ly@istributed as the number of variables is increased
no matter 4t the distributions of the variables. Moreover,
althoughwe do not discuss it here, all the conditions of the
theorgm need not necessarily be satisfied; under certain condi-
tionthe variables need not be independent and it is sufficient
6. assume the absolute moments of order 2+ & exist, where & i8
\gome number greater than zero.

The generalized theorem of Liapounoff may be proved in
several different ways. Perhaps one of the simplest methods of
proof is by using Liapounoff’s inequality for moments. We shall
state hoth the moment inequality and the generalized theorem
but will refer the reader for proof to any of the freatises on the
caleulus of probability.



Moments and Cumulants .~ . 221

1TATOUNOFF'S INEQUALITY FOR MOMENTS

The absolute moment of order % of a random variable, x',' is
defined as IR -

ﬁk.:.[+:|x—é"(x)|"‘p(x}dx or ﬁk=§lwk_#€(w)l"1{{§v};

according as the variable is continuous or discontinuous..

If @, b and ¢ are real numbers such that C A
_ _ oo K&
azbzcz0, O
then ﬂg—-cgﬂg—bﬁgﬂc' i (n:’g

The proof follows directly from repeated app]imtions}of Cauchy’s

inequality. \
D

. RS
Lisarouxo¥r’s THEOREM
If (1), @, ..., @, 8T€ random mdgi)eﬁdent variables with zero

means,
(2) @y, s, ---» X, GBCH POSEESS, absolute moments of order

2+ 8, where §> 0%

w

(3) o is the stm@rd’ deviation pf kgl Ty,y

(4) the raibib"1ﬁ2+8+2ﬁ2;32;"'+“ﬁ2+" tends to zero as %
ten@é\ﬁb infinity,
then th \:gtandardized qum of the a’s tends to be normally
distributed as » tends to infinity. N
A-large number of Jistributions may be found in :statmtlcs
hich will satisfy the conditions of the theorer. If it iz kmown
\glaat observations have been independently and randomly drawn
from a population, the moments of which satisfy the theorem,
then as the size of the sample is increased the standardized mean
of the sample will tend to be normally distributed. The theorem
has therefore a wide field of application in statistical theory,

possibly wider than any other single theorem.
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CHAPTER XVII

CHARACTERISTIC FUNCTIONS.
CONVERSE THEOREMS

In the previous two chapters we have been concerned with the
derivation of the characteristic funetion of a variable from its
probability law and the proof of various theorems by means of
the characteristic fanction. In the proof of the theorems it has.,
been usual to derive a limiting characteristic function whiéh)is '
then recognized as being the characteristic funetion ofga~given
probability law. In most of the cases where the elgmentary
theory of this treatise is applicable this procedure"ia\adequa.te,
but it cannot have escaped attention that theréwmay be occa-
sions when the characteristic function cannép)be recognized as
belonging to any known probability lavirf;:i‘ha probability law
of any random variable, x, may be caleulated, if its characteristic
funetion is known, by means of knowit theorems. We shall state
and prove the theorem when the Sariable is discontinuous, and
state the theorem without proofshen the variable is continuous.

THEOREM. z is a discog{hmous random variable which may
take only zero or positivé.integral values. If p (k) = Plz =k} is
the elementary proba,l}ﬂmy law of @, and ¢,(¢) its characteristic
function, then N/

O\ 1 {7 itk
\M Y/
K s’\\“ =0
By defiiition  4.() = £(¢*) = X eop(z).
O\ =

I

\ 4 +r .
We shall consider 5 Pty e dt

and prove that it is equal to Pk
L g~ L[5 e~k i}
- J_N¢m(6) e =5 | T ple)etePdl

—x m==1

Since the series is uniformly convergent with respect to ¢ the
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summation and integral signs may be transposed and we have

+r o
%T 2 _‘p(:v) eta—R) Jf == — E p(x J pitiz=k) gt
- =0 — "

( % pla) [ et

i) [T 3 @ | efftx—k)dz).

w=k+1 N\
The first and third integrals vanish and we have O\
' 1 pm g . O '
o |_ebe i =p B

THEOREM. % is an absolutely continuous rand@rﬁ variable the
probability law of which is p{z). If the chatacteristic function
corresponding to p(x) is ¢,(f), then \‘\ ”

1 + = O ‘.: }—ﬁxd
P =5 | "o
Example, Given oD

Boft) = GXP[ A(1-eM)]

and that z may only\take zero and positive mteger values
0,1,2,..., find the pgvb&bﬂlty law of z.

) -i:.ﬁ —A 4+ A rairt
po{k) = —1v\J..~’ e Aty = £ j i (e*ﬁk b vM )dt
t,\ﬂ ] 27 rl

— r=0

The se ea\as uniformly convergent with respect to ¢t and we may
therefo}e write

" A U A
\\ﬁxﬁﬂ) = o Eﬂ Il k) gff

—A [ThR—1 jr 7 : kB o+ o +w B
=2 Z}LJ. eﬁif—k)dt+%J. di+ 3 E;J. eﬁ(f—k)dt}

o2 | .Zh ! r=k+1 7T
. . ek
giving : Poll) = T

which is recoguized to be the elementary probability law of
Poisso_n’_s binomial limit.
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Example. Given
$,(8) = exp[— 3P0 +itE]

and that @ is & continnous random variable which may take any -
values between —oo and +co, find the elementary probability
law of x. '

pl@) = 5- Jj:gbx(t) eted = o j j: oxp[ - 420~ itlz—E)ldb.

N

Complete the square in the exponent. A\

plx) = _215 exp [— 5;3 (x— 5)2] E: exp I:— 5: (t +;§ (a:~£))a] d:t _

I 'Ni‘\l\ 2]
= Z/% exi)]: 352 (=82 |.
: N -
Thus the elementary probability law of aidehormal distribution
as will already have been recognizéd) from the form of the

characteristic function. ‘
Bzample. Given that z is a.,..gp’ntinuous variable which may

take any values between —oslmd +o and that
LGy = e,
where ¢ > 0, find thé\gléinentary probability law of .
oy N +w
BN N 5 0 —f(ix—“’dt+'lJ. o—ltieta) i
plx) = 2n J;).ngbx(t]e di = J._we oty &
7\

A ;.L+;_] a

R CEra)

")

EE

o2 [ a—ix o+t

'\ ]
The result of this last example should be remembered. It is
ddmparatively easy to obtain the probability law from a know-

ledge of the characteristic function but it is not 80 simple to

proceed in the reverse direction without & knowledge of c'ont?ur
' ot familiar with this kind

integration. For the reader who is & b
of integration it is legitimate to memorize that a certain char-
acteristic function comes from & certain probability law, or
vice versa, and to prove the connexion by whichever process 18

simpler.

orT

5
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Example. If & = E x;, where it is known that the 2’s are

=1
independent continuons random variables, and that for any
i=L2...n 1
' ple;) =

(1 + (z;—a)?)’
use the characteristic funetion to deduce the probability law
of .

"\
From the evidence of the preceding example we may guess the
characteristic function of x; to be <\
?S.n {t) = e itrait 4 ;’\
and prove that it is so by direct integration. ‘ )

+
ple;} = 3 17,[ géxj(t)e—“x:dc lf e—ﬁ@; a)—md;

Dividing the integral into two parts a.s b&ore and integrating

separately we have 3 »
;) = 1 [ 1 n I
P = on L—i(z;—a) 1 +~a,(a:j—a,) T Al (@ —a)?)

Since fo every probability Jaw there is a uniquely defined
characteristic function, @, (t) as defined above will be the
characteristic function<pf the variable w;, following the given
probability law p(egh
It has been dgrgonstrated earlier that
A Pslt) = (Puy(t/n))".
Hence the\'é}é.racteristic function of  will be

X £\ .
+ai —]) = gmItIed,

& o= o] ¢
V 1

|
A Jollows that
@ = 0 E—ap)
Baercise. Given that «; is a discontinuous random variable

which may take only positive values and that

Puy(E) = ¥ pet 4 qI7,
where @ and % are constants, find pi{z;) and p(Z), where
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Brample. xis a discontinnous random variable which may take
only zero or positive integer values. If

$alt) = exp[—a(l—e )],
where @ > 0 and b > 0, calculate the probability law of .
+m .
Ple =k} = p k) = %rj exp [ —ith—a(l —e 2~ dt.

If, as before, we replace the exponential by a series uniformly

convergent in #, then LS N
e~ © gre—th ® (.rb)lj‘-{-ﬂ_ \\ ’
B=oo 3 e 3 | P N
Pa(k) 2m ,Z‘[. rl o M J-a RO

When I = k the integral is equal to 27 and when Z;l;?'qialie integral

is zero. Hence _
e-—u,bk o arrkg—rb O
W O\

Polk) = 77 2T e
This is the probability law of Neymah’s contagious distribution
disenssed earlier. o

W
ay
e
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